Nano Research

, Volume 9, Issue 2, pp 401–414 | Cite as

Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light

  • Yang Yang
  • Su Ding
  • Teppei ArakiEmail author
  • Jinting Jiu
  • Tohru Sugahara
  • Jun Wang
  • Jan VanfleterenEmail author
  • Tsuyoshi Sekitani
  • Katsuaki Suganuma
Research Article


Silver nanowires (AgNWs) have emerged as a promising nanomaterial for next generation stretchable electronics. However, until now, the fabrication of AgNWbased components has been hampered by complex and time-consuming steps. Here, we introduce a facile, fast, and one-step methodology for the fabrication of highly conductive and stretchable AgNW/polyurethane (PU) composite electrodes based on a high-intensity pulsed light (HIPL) technique. HIPL simultaneously improved wire–wire junction conductivity and wire–substrate adhesion at room temperature and in air within 50 μs, omitting the complex transfer–curing–implanting process. Owing to the localized deformation of PU at interfaces with AgNWs, embedding of the nanowires was rapidly carried out without substantial substrate damage. The resulting electrode retained a low sheet resistance (high electrical conductivity) of <10 Ω/sq even under 100% strain, or after 1,000 continuous stretching–relaxation cycles, with a peak strain of 60%. The fabricated electrode has found immediate application as a sensor for motion detection. Furthermore, based on our electrode, a light emitting diode (LED) driven by integrated stretchable AgNW conductors has been fabricated. In conclusion, our present fabrication approach is fast, simple, scalable, and costefficient, making it a good candidate for a future roll-to-roll process.


silver nanowires stretchable electrode photonic sintering nanofabrication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_921_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1.38 MB.
12274_2015_921_MOESM2_ESM.mp4 (1.3 mb)
Supplementary material, approximately 1.29 MB.
12274_2015_921_MOESM3_ESM.mp4 (3.1 mb)
Supplementary material, approximately 3.11 MB. (3.6 mb)
Supplementary material, approximately 158 MB.


  1. [1]
    Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 2, 1603–1607.CrossRefGoogle Scholar
  2. [2]
    Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 2, 1543.CrossRefGoogle Scholar
  3. [3]
    Vanfleteren, J.; Gonzalez, M.; Bossuyt, F.; Hsu, Y.-Y.; Vervust, T.; De Wolf, I.; Jablonski, M. Printed circuit board technology inspired stretchable circuits. MRS Bull. 2012, 2, 254–260.CrossRefGoogle Scholar
  4. [4]
    Vervust, T.; Buyle, G.; Bossuyt, F.; Vanfleteren, J. Integration of stretchable and washable electronic modules for smart textile applications. J. Text. Inst. 2012, 2, 1127–1138.CrossRefGoogle Scholar
  5. [5]
    Bossuyt, F.; Vervust, T.; Vanfleteren, J. Stretchable electronics technology for large area applications: Fabrication and mechanical characterization. IEEE Trans. Comp. Pack. Man. Technol. 2013, 2, 229–235.Google Scholar
  6. [6]
    Lai, Y.-C.; Huang, Y.-C.; Lin, T.-Y.; Wang, Y.-X.; Chang, C.-Y.; Li, Y.; Lin, T.-Y.; Ye, B.-W.; Hsieh, Y.-P.; Su, W.-F. et al. Stretchable organic memory: Toward learnable and digitized stretchable electronic applications. NPG Asia Mater. 2014, 2, e87.CrossRefGoogle Scholar
  7. [7]
    Feng, X.; Yang, B. D.; Liu, Y. M.; Wang, Y.; Dagdeviren, C.; Liu, Z. J.; Carlson, A.; Li, J. Y.; Huang, Y. G.; Rogers, J. A. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 2011, 2, 3326–3332.CrossRefGoogle Scholar
  8. [8]
    Graz, I. M.; Lacour, S. P. Complementary organic thin film transistor circuits fabricated directly on silicone substrates. Organic Electronics 2010, 2, 1815–1820.CrossRefGoogle Scholar
  9. [9]
    Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z. Stretchable organic solar cells. Adv. Mater. 2011, 2, 1771–1775.CrossRefGoogle Scholar
  10. [10]
    Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 2, 494–499.CrossRefGoogle Scholar
  11. [11]
    Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwö diauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 2, 458–463.CrossRefGoogle Scholar
  12. [12]
    Hu, L. B.; Pasta, M.; Mantia, F. L.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 2, 708–714.CrossRefGoogle Scholar
  13. [13]
    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 2, 296–301.Google Scholar
  14. [14]
    Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 2, 1058–1064.CrossRefGoogle Scholar
  15. [15]
    Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 2, 3989–3994.CrossRefGoogle Scholar
  16. [16]
    Sekitani, T.; Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 2010, 2, 2228–2246.CrossRefGoogle Scholar
  17. [17]
    Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 2, 1590–1600.CrossRefGoogle Scholar
  18. [18]
    Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z.-Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 2, 4539–4545.CrossRefGoogle Scholar
  19. [19]
    Hu, L. B.; Yuan, W.; Brochu, P.; Gruner, G.; Pei, Q. B. Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 2009, 2, 161108.Google Scholar
  20. [20]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 2, 706–710.CrossRefGoogle Scholar
  21. [21]
    Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 2, 853–857.CrossRefGoogle Scholar
  22. [22]
    Araki, T.; Nogi, M.; Suganuma, K.; Kogure, M.; Kirihara, O. Printable and stretchable conductive wirings comprising silver flakes and elastomers. IEEE Electr. Device Lett. 2011, 2, 1424–1426.CrossRefGoogle Scholar
  23. [23]
    Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M.-B.; Jeon, S.; Chung, D.-Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 2, 803–809.CrossRefGoogle Scholar
  24. [24]
    Sun, J.-Y.; Zhao, X. H.; Illeperuma, W. R.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 2, 133–136.CrossRefGoogle Scholar
  25. [25]
    Keplinger, C.; Sun, J.-Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2013, 2, 984–987.CrossRefGoogle Scholar
  26. [26]
    Hu, L. B.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 2, 2955–2963.CrossRefGoogle Scholar
  27. [27]
    Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 2, 5117–5122.CrossRefGoogle Scholar
  28. [28]
    Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 2, 3326–3332.CrossRefGoogle Scholar
  29. [29]
    Hu, W. L.; Niu, X. F.; Zhao, R.; Pei, Q. B. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 2013, 2, 083303.Google Scholar
  30. [30]
    Liang, J. J.; Li, L.; Niu, X. F.; Yu, Z. B.; Pei, Q. B. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 2, 817–824.CrossRefGoogle Scholar
  31. [31]
    Jiu, J. T.; Nogi, M.; Sugahara, T.; Tokuno, T.; Araki, T.; Komoda, N.; Suganuma, K.; Uchida, H.; Shinozaki, K. Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J. Mater. Chem. 2012, 2, 23561–23567.CrossRefGoogle Scholar
  32. [32]
    Jiu, J. T.; Sugahara, T.; Nogi, M.; Araki, T.; Suganuma, K.; Uchida, H.; Shinozaki, K. High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: The effect of the thermal properties of substrates on the performance of silver films. Nanoscale 2013, 2, 11820–11828.CrossRefGoogle Scholar
  33. [33]
    Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 2, 241–249.CrossRefGoogle Scholar
  34. [34]
    Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 2, 193–204.CrossRefGoogle Scholar
  35. [35]
    Baffou, G.; Quidant, R.; Girard, C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 2009, 2, 153109.Google Scholar
  36. [36]
    Kulkarni, D. D.; Kim, S.; Fedorov, A. G.; Tsukruk, V. V. Light-induced plasmon-assisted phase transformation of carbon on metal nanoparticles. Adv. Funct. Mater. 2012, 2, 2129–2139.CrossRefGoogle Scholar
  37. [37]
    Araki, T.; Sugahara, T.; Jiu, J. T.; Nagao, S.; Nogi, M.; Koga, H.; Uchida, H.; Shinozaki, K.; Suganuma, K. Cu salt ink formulation for printed electronics using photonic sintering. Langmuir 2013, 2, 11192–11197.CrossRefGoogle Scholar
  38. [38]
    Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K.; Nakazawa, E.; Hara, M. et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J. Mater. Chem. A 2014, 2, 6326–6330.CrossRefGoogle Scholar
  39. [39]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 2, 1767–1774.CrossRefGoogle Scholar
  40. [40]
    Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 2, 564–573.CrossRefGoogle Scholar
  41. [41]
    Yun, S.; Niu, X. F.; Yu, Z. B.; Hu, W. L.; Brochu, P.; Pei, Q. B. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 2012, 2, 1321–1327.CrossRefGoogle Scholar
  42. [42]
    Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 2, 5154–5163.CrossRefGoogle Scholar
  43. [43]
    Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 2, 2905–2910.CrossRefGoogle Scholar
  44. [44]
    Akter, T.; Kim, W. S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 2012, 2, 1855–1859.CrossRefGoogle Scholar
  45. [45]
    Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 2, 4484–4488.Google Scholar
  46. [46]
    Yu, Z. B.; Zhang, Q. W.; Li, L.; Chen, Q.; Niu, X. F.; Liu, J.; Pei, Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 2, 664–668.Google Scholar
  47. [47]
    Hu, W. L.; Niu, X. F.; Li, L.; Yun, S.; Yu, Z. B.; Pei, Q. B. Intrinsically stretchable transparent electrodes based on silvernanowire–crosslinked-polyacrylate composites. Nanotechnology 2012, 2, 344002.CrossRefGoogle Scholar
  48. [48]
    Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.CrossRefGoogle Scholar
  49. [49]
    Hu, X. L.; Krull, P.; de Graff, B.; Dowling, K.; Rogers, J. A.; Arora, W. J. Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 2011, 2, 2933–2936.CrossRefGoogle Scholar
  50. [50]
    Lacour, S. P.; Jones, J.; Wagner, S.; Li, T.; Suo, Z. G. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 2005, 2, 1459–1467.CrossRefGoogle Scholar
  51. [51]
    Baldan, A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment. J. Mater. Sci. 2004, 2, 1–49.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yang Yang
    • 1
  • Su Ding
    • 2
    • 3
  • Teppei Araki
    • 2
    Email author
  • Jinting Jiu
    • 2
  • Tohru Sugahara
    • 2
  • Jun Wang
    • 2
    • 3
  • Jan Vanfleteren
    • 1
    Email author
  • Tsuyoshi Sekitani
    • 2
  • Katsuaki Suganuma
    • 2
  1. 1.Center for Microsystems TechnologyIMEC and Ghent UniversityGent-ZwijnaardeBelgium
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan
  3. 3.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina

Personalised recommendations