Nano Research

, Volume 9, Issue 2, pp 363–371 | Cite as

Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency

  • Yu Cao
  • Yuchi Che
  • Hui Gui
  • Xuan Cao
  • Chongwu Zhou
Research Article


In this paper, we report polyfluorene-separated ultra-high purity semiconducting carbon nanotube radio frequency transistors with a self-aligned T-shape gate structure. Because of the ultra-high semiconducting tube purity and self-aligned T-shape gate structure, these transistors showed an excellent direct current and radio frequency performance. In regard to the direct current characteristics, these transistors showed a transconductance up to 40 μS/μm and an excellent current saturation behavior with an output resistance greater than 200 kΩ·μm. In terms of the radio frequency characteristics, an extrinsic maximum oscillation frequency (f max) of 19 GHz was achieved, which is a record among all kinds of carbon nanotube transistors, and an extrinsic current gain cut-off frequency (f T) of 22 GHz was achieved, which is the highest among transistors based on carbon nanotube networks. Our results take the radio frequency performance of carbon nanotube transistors to a new level and can further accelerate the application of carbon nanotubes for future radio frequency electronics.


carbon nanotube ultra-high purity radio frequency transistors maximum oscillation frequency T-shape gate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_915_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.01 MB.


  1. [1]
    Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.CrossRefGoogle Scholar
  2. [2]
    Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.CrossRefGoogle Scholar
  3. [3]
    Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 2009, 4, 811–819.CrossRefGoogle Scholar
  4. [4]
    Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.CrossRefGoogle Scholar
  5. [5]
    Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.CrossRefGoogle Scholar
  6. [6]
    Liu, X. L.; Lee, C.; Zhou, C. W.; Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 2001, 79, 3329–3331.CrossRefGoogle Scholar
  7. [7]
    Ryu, K.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.CrossRefGoogle Scholar
  8. [8]
    Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.CrossRefGoogle Scholar
  9. [9]
    Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefGoogle Scholar
  10. [10]
    Zhang, J. L; Fu, Y.; Wang, C.; Chen, P. C.; Liu, Z. W.; Wei, W.; Wu, C.; Thompson, M. E.; Zhou, C. W. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858.CrossRefGoogle Scholar
  11. [11]
    Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769–12776.CrossRefGoogle Scholar
  12. [12]
    Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.Google Scholar
  13. [13]
    Zhang, J. L.; Gui, H.; Liu, B. L.; Liu, J.; Zhou, C. W. Comparative study of gel-based separated arcdischarge, HiPCO, and CoMoCAT carbon nanotubes for macroelectronic applications. Nano Res. 2013, 6, 906–920.CrossRefGoogle Scholar
  14. [14]
    Takahashi, T.; Yu, Z. B.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B. W.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430.CrossRefGoogle Scholar
  15. [15]
    Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.CrossRefGoogle Scholar
  16. [16]
    Vuttipittayamongkol, P.; Wu, F. Q.; Chen, H. T.; Cao, X.; Liu, B. L.; Zhou, C. W. Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Res. 2015, 8, 1159–1168.CrossRefGoogle Scholar
  17. [17]
    Li, S. D.; Yu, Z.; Yen, S. F.; Tang, W. C.; Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 2004, 4, 753–756.CrossRefGoogle Scholar
  18. [18]
    Le Louarn, A.; Kapche, F.; Bethoux, J. M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.CrossRefGoogle Scholar
  19. [19]
    Nougaret, L.; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J. P.; Green, A. A.; Hersam, M. C. 80 GHz field-effect transistors produced using high purity semiconducting singlewalled carbon nanotubes. Appl. Phys. Lett. 2009, 94, 243505.CrossRefGoogle Scholar
  20. [20]
    Wang, C.; Badmaev, A.; Jooyaie, A.; Bao, M. Q.; Wang, K. L.; Galatsis, K.; Zhou, C. W. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano 2011, 5, 4169–4176.CrossRefGoogle Scholar
  21. [21]
    Che, Y. C.; Badmaev, A.; Jooyaie, A.; Wu, T.; Zhang, J. L.; Wang, C.; Galatsis, K.; Enaya, H. A.; Zhou, C. W. Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime. ACS Nano 2012, 6, 6936–6943.CrossRefGoogle Scholar
  22. [22]
    Ding, L.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Wang, S.; Xu, H. L.; Peng, F.; Li, Y.; Peng, L. M. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. ACS Nano 2011, 5, 2512–2519.CrossRefGoogle Scholar
  23. [23]
    Che, Y. C.; Lin, Y. C.; Kim, P.; Zhou, C. W. T-gate aligned nanotube radio frequency transistors and circuits with superior performance. ACS Nano 2013, 7, 4343–4350.CrossRefGoogle Scholar
  24. [24]
    Steiner, M.; Engel, M.; Lin, Y. M.; Wu, Y. Q.; Jenkins, K.; Farmer, D. B.; Humes, J. J.; Yoder, N. L.; Seo, J. W. T.; Green, A. A. et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 2012, 101, 053123.CrossRefGoogle Scholar
  25. [25]
    Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. M.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H. et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.CrossRefGoogle Scholar
  26. [26]
    Wang, Z. X.; Liang, S. B.; Zhang, Z. Y.; Liu, H. G.; Zhong, H.; Ye, L. H.; Wang, S.; Zhou, W. W.; Liu, J.; Chen, Y. B. et al. Scalable fabrication of ambipolar transistors and radio-frequency circuits using aligned carbon nanotube arrays. Adv. Mater. 2014, 26, 645–652.CrossRefGoogle Scholar
  27. [27]
    Chaste, J.; Lechner, L.; Morfin, P.; Fè ve, G.; Kontos, T.; Berroir, J. M.; Glattli, D. C.; Happy, H.; Hakonen, P.; Placais, B. Single carbon nanotube transistor at GHz frequency. Nano Lett. 2008, 8, 525–528.CrossRefGoogle Scholar
  28. [28]
    Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.CrossRefGoogle Scholar
  29. [29]
    Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.CrossRefGoogle Scholar
  30. [30]
    Li, J. H.; Liu, K. H.; Liang, S. B.; Zhou, W. W.; Pierce, M.; Wang, F.; Peng, L. M.; Liu, J. Growth of high-densityaligned and semiconducting-enriched single-walled carbon nanotubes: Decoupling the conflict between density and selectivity. ACS Nano 2014, 8, 554–562.CrossRefGoogle Scholar
  31. [31]
    Yeh, C. H.; Lain, Y. W.; Chiu, Y. C.; Liao, C. H.; Moyano, D. R.; Hsu, S. S. H.; Chiu, P. W. Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 2014, 8, 7663–7670.CrossRefGoogle Scholar
  32. [32]
    Badmaev, A.; Che, Y. C.; Li, Z.; Wang, C.; Zhou, C. W. Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano 2012, 6, 3371–3376.CrossRefGoogle Scholar
  33. [33]
    Chen, J. D.; Lin, Z. M. 2.4 GHz high IIP3 and low-noise down-conversion mixer. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006, pp 37–40.Google Scholar
  34. [34]
    Wan, Q. Z.; Wang, C. H.; Ma, M. L. A novel 2.4 GHz CMOS up-conversion current-mode mixer. Radioengineering 2009, 18, 532–536.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yu Cao
    • 1
  • Yuchi Che
    • 1
  • Hui Gui
    • 1
  • Xuan Cao
    • 1
  • Chongwu Zhou
    • 1
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations