Kim, J.; Benson, O.; Kan, H.; Yamamoto, Y. A singlephoton turnstile device. Nature
1999, 397, 500–503.
Article
Google Scholar
Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff, P. M.; Zhang, L. D.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science
2000, 290, 2282–2285.
Article
Google Scholar
Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Electrically pumped single-photon sources in lateral p–i–n junctions. Appl. Phys. Lett.
2004, 85, 3238–3240.
Article
Google Scholar
Yuan, Z. L.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M. Electrically driven single-photon source. Science
2002, 295, 102–105.
Article
Google Scholar
Xu, X. L.; Toft, I.; Phillips, R. T.; Mar, J.; Hammura, K.; Williams, D. A. “Plug and play” single-photon sources. Appl. Phys. Lett.
2007, 90, 061103.
Article
Google Scholar
Xu, X. L.; Brossard, F.; Hammura, K.; Williams, D. A.; Alloing, B.; Li, L. H.; Fiore, A. “Plug and play” single photons at 1.3 µm approaching gigahertz operation. Appl. Phys. Lett.
2008, 93, 021124.
Article
Google Scholar
Zrenner, A.; Beham, E.; Stufler, S.; Findeis, F.; Bichler, M.; Abstreiter, G. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature
2002, 418, 612–614.
Article
Google Scholar
Mar, J. D.; Baumberg, J. J.; Xu, X. L.; Irvine, A. C.; Williams, D. A. Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields. Phys. Rev. B
2014, 90, 241303.
Article
Google Scholar
Li, X. Q.; Wu, Y. W.; Steel, D.; Gammon, D.; Stievater, T. H.; Katzer, D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An all-optical quantum gate in a semiconductor quantum dot. Science
2003, 301, 809–811.
Article
Google Scholar
De Greve, K.; Yu, L.; McMahon, P. L.; Pelc, J. S.; Natarajan, C. M.; Kim, N. Y.; Abe, E.; Maier, S.; Schneider, C.; Kamp, M. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature
2012, 491, 421–425.
Article
Google Scholar
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L. M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett.
2013, 110, 167401.
Article
Google Scholar
Webster, L. A.; Truex, K.; Duan, L. M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Coherent control to prepare an InAs quantum dot for spin-photon entanglement. Phys. Rev. Lett.
2014, 112, 126801.
Article
Google Scholar
Ediger, M.; Bester, G.; Badolato, A.; Petroff, P. M.; Karrai, K.; Zunger, A.; Warburton, R. J. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nat. Phys.
2007, 3, 774–779.
Article
Google Scholar
Tang, J.; Cao, S.; Gao, Y.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. Appl. Phys. Lett.
2014, 105, 041109.
Article
Google Scholar
Van Hattem, B.; Corfdir, P.; Brereton, P.; Pearce, P.; Graham, A. M.; Stanley, M. J.; Hugues, M.; Hopkinson, M.; Phillips, R. T. From the artificial atom to the Kondo–Anderson model: Orientation-dependent magnetophotoluminescence of charged excitons in InAs quantum dots. Phys. Rev. B
2013, 87, 205308.
Article
Google Scholar
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science
2004, 306, 666–669.
Article
Google Scholar
Fuhrer, M. S.; Hone, J. Measurement of mobility in dualgated MoS2 transistors. Nat. Nano
2013, 8, 146–147.
Article
Google Scholar
Hong, X. P.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nano
2014, 9, 682–686.
Article
Google Scholar
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nano
2014, 9, 372–377.
Article
Google Scholar
Latta, C.; Haupt, F.; Hanl, M.; Weichselbaum, A.; Claassen, M.; Wuester, W.; Fallahi, P.; Faelt, S.; Glazman, L.; von Delft, J. et al. Quantum quench of Kondo correlations in optical absorption. Nature
2011, 474, 627–630.
Google Scholar
Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Y.; Koenraad, P. M. Many-body exciton states in self-assembled quantum dots coupled to a fermi sea. Nat. Phys.
2010, 6, 534–538.
Article
Google Scholar
Türeci, H. E.; Hanl, M.; Claassen, M.; Weichselbaum, A.; Hecht, T.; Braunecker, B.; Govorov, A.; Glazman, L.; Imamoglu, A.; von Delft, J. Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards kondo correlations. Phys. Rev. Lett.
2011, 106, 107402.
Article
Google Scholar
Govorov, A. O.; Karrai, K.; Warburton, R. J. Kondo excitons in self-assembled quantum dots. Phys. Rev. B
2003, 67, 241307.
Article
Google Scholar
Zhang, W.; Govorov, A. O.; Bryant, G. W. Semiconductormetal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett.
2006, 97, 146804.
Article
Google Scholar
Bar-Ad, S.; Kner, P.; Marquezini, M. V.; Mukamel, S.; Chemla, D. S. Quantum confined Fano interference. Phys. Rev. Lett.
1997, 78, 1363–1366.
Article
Google Scholar
Kroner, M.; Govorov, A. O.; Remi, S.; Biedermann, B.; Seidl, S.; Badolato, A.; Petroff, P. M.; Zhang, W.; Barbour, R.; Gerardot, B. D. et al. The nonlinear Fano effect. Nature
2008, 451, 311–314.
Google Scholar
Karrai, K.; Warburton, R. J.; Schulhauser, C.; Hö gele, A.; Urbaszek, B.; McGhee, E. J.; Govorov, A. O.; Garcia, J. M.; Gerardot, B. D.; Petroff, P. M. Hybridization of electronic states in quantum dots through photon emission. Nature
2004, 427, 135–138.
Article
Google Scholar
Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J. Absorption and emission in quantum dots: Fermi surface effects of anderson excitons. Phys. Rev. B
2005, 72, 125301.
Article
Google Scholar
Dalgarno, P. A.; Ediger, M.; Gerardot, B. D.; Smith, J. M.; Seidl, S.; Kroner, M.; Karrai, K.; Petroff, P. M.; Govorov, A. O.; Warburton, R. J. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett.
2008, 100, 176801.
Article
Google Scholar
Hilario, L. M. L.; Aligia, A. A. Photoluminescence of a quantum dot hybridized with a continuum of extended states. Phys. Rev. Lett.
2009, 103, 156802.
Article
Google Scholar
Mazur, Y. I.; Dorogan, V. G.; Guzun, D.; Marega, E.; Salamo, G. J.; Tarasov, G. G.; Govorov, A. O.; Vasa, P.; Lienau, C. Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy. Phys. Rev. B
2010, 82, 155413.
Article
Google Scholar
Syperek, M.; Andrzejewski, J.; Rudno-Rudzinski, W.; Sek, G.; Misiewicz, J.; Pavelescu, E. M.; Gilfert, C.; Reithmaier, J. P. Influence of electronic coupling on the radiative lifetime in the (In, Ga)As/GaAs quantum dot-quantum well system. Phys. Rev. B
2012, 85, 125311.
Article
Google Scholar
Leonard, D.; Pond, K.; Petroff, P. M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B
1994, 50, 11687–11692.
Article
Google Scholar
Eisenberg, H. R.; Kandel, D. Wetting layer thickness and early evolution of epitaxially strained thin films. Phys. Rev. Lett.
2000, 85, 1286–1289.
Article
Google Scholar
Hugues, M.; Teisseire, M.; Chauveau, J. M.; Vinter, B.; Damilano, B.; Duboz, J. Y.; Massies, J. Optical determination of the effective wetting layer thickness and composition in InAs/Ga(In)As quantum dots. Phys. Rev. B
2007, 76, 075335.
Article
Google Scholar
Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Splitting of excitons and biexcitons in coupled InAs quantum dot molecules. Appl. Phys. Lett.
2005, 86, 012103.
Article
Google Scholar
Nash, K. J.; Skolnick, M. S.; Claxton, P. A.; Roberts, J. S. Diamagnetism as a probe of exciton localization in quantum wells. Phys. Rev. B
1989, 39, 10943–10954.
Article
Google Scholar
Walck, S. N.; Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B
1998, 57, 9088–9096.
Article
Google Scholar
Tsai, M.-F.; Lin, H.; Lin, C.-H.; Lin, S.-D.; Wang, S.-Y.; Lo, M.-C.; Cheng, S.-J.; Lee, M.-C.; Chang, W.-H. Diamagnetic response of exciton complexes in semiconductor quantum dots. Phys. Rev. Lett.
2008, 101, 267402.
Article
Google Scholar
Fu, Y. J.; Lin, S. D.; Tsai, M. F.; Lin, H.; Lin, C. H.; Chou, H. Y.; Cheng, S. J.; Chang, W. H. Anomalous diamagnetic shift for negative trions in single semiconductor quantum dots. Phys. Rev. B
2010, 81, 113307.
Article
Google Scholar
Schulhauser, C.; Haft, D.; Warburton, R. J.; Karrai, K.; Govorov, A. O.; Kalameitsev, A. V.; Chaplik, A.; Schoenfeld, W.; Garcia, J. M.; Petroff, P. M. Magneto-optical properties of charged excitons in quantum dots. Phys. Rev. B
2002, 66, 193303.
Article
Google Scholar
Cao, S.; Tang, J.; Gao, Y.; Sun, Y.; Qiu, K. S.; Zhao, Y. H.; He, M.; Shi, J. A.; Gu, L.; Williams, D. A. et al. Longitudinal wave function control in single quantum dots with an applied magnetic field. Sci. Rep.
2015, 5, 8041.
Google Scholar
Babinski, A.; Ortner, G.; Raymond, S.; Potemski, M.; Bayer, M.; Sheng, W.; Hawrylak, P.; Wasilewski, Z.; Fafard, S.; Forchel, A. Ground-state emission from a single InAs/GaAs self-assembled quantum dot structure in ultrahigh magnetic fields. Phys. Rev. B
2006, 74, 075310.
Article
Google Scholar
Someya, T.; Akiyama, H.; Sakaki, H. Laterally squeezed excitonic wave function in quantum wires. Phys. Rev. Lett.
1995, 74, 3664–3667.
Article
Google Scholar
Mensing, T.; Reitzenstein, S.; Lö ffler, A.; Reithmaier, J. P.; Forchel, A. Magnetooptical investigations of single self assembled In0.3Ga0.7As quantum dots. Phys. E: Low-Dimens. Sys. Nanostruct.
2006, 32, 131–134.
Article
Google Scholar
Mahan, G. D. Excitons in degenerate semiconductors. Phys. Rev.
1967, 153, 882–889.
Article
Google Scholar
Finkelstein, G.; Shtrikman, H.; Bar-Joseph, I. Shakeup processes in the recombination spectra of negatively charged excitons. Phys. Rev. B
1996, 53, 12593–12596.
Article
Google Scholar
Kheng, K.; Cox, R. T.; d’Aubigné, M. Y.; Bassani, F.; Saminadayar, K.; Tatarenko, S. Observation of negatively charged excitons X- in semiconductor quantum wells. Phys. Rev. Lett.
1993, 71, 1752–1755.
Article
Google Scholar
Toft, I.; Phillips, R. T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure. Phys. Rev. B
2007, 76, 033301.
Article
Google Scholar
Brunner, D.; Gerardot, B. D.; Dalgarno, P. A.; Wüst, G.; Karrai, K.; Stoltz, N. G.; Petroff, P. M.; Warburton, R. J. A coherent single-hole spin in a semiconductor. Science
2009, 325, 70–72.
Article
Google Scholar