Skip to main content

Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects

Abstract

We report the direct observation of coupling between a single self-assembled InAs quantum dot and a wetting layer, based on strong diamagnetic shifts of many-body exciton states using magneto-photoluminescence spectroscopy. An extremely large positive diamagnetic coefficient is observed when an electron in the wetting layer combines with a hole in the quantum dot; the coefficient is nearly one order of magnitude larger than that of the exciton states confined in the quantum dots. Recombination of electrons with holes in a quantum dot of the coupled system leads to an unusual negative diamagnetic effect, which is five times stronger than that in a pure quantum dot system. This effect can be attributed to the expansion of the wavefunction of remaining electrons in the wetting layer or the spread of electrons in the excited states of the quantum dot to the wetting layer after recombination. In this case, the wavefunction extent of the final states in the quantum dot plane is much larger than that of the initial states because of the absence of holes in the quantum dot to attract electrons. The properties of emitted photons that depend on the large electron wavefunction extents in the wetting layer indicate that the coupling occurs between systems of different dimensionality, which is also verified from the results obtained by applying a magnetic field in different configurations. This study paves a new way to observe hybrid states with zero- and two-dimensional structures, which could be useful for investigating the Kondo physics and implementing spin-based solid-state quantum information processing.

This is a preview of subscription content, access via your institution.

References

  1. Kim, J.; Benson, O.; Kan, H.; Yamamoto, Y. A singlephoton turnstile device. Nature 1999, 397, 500–503.

    Article  Google Scholar 

  2. Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff, P. M.; Zhang, L. D.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282–2285.

    Article  Google Scholar 

  3. Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Electrically pumped single-photon sources in lateral p–i–n junctions. Appl. Phys. Lett. 2004, 85, 3238–3240.

    Article  Google Scholar 

  4. Yuan, Z. L.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M. Electrically driven single-photon source. Science 2002, 295, 102–105.

    Article  Google Scholar 

  5. Xu, X. L.; Toft, I.; Phillips, R. T.; Mar, J.; Hammura, K.; Williams, D. A. “Plug and play” single-photon sources. Appl. Phys. Lett. 2007, 90, 061103.

    Article  Google Scholar 

  6. Xu, X. L.; Brossard, F.; Hammura, K.; Williams, D. A.; Alloing, B.; Li, L. H.; Fiore, A. “Plug and play” single photons at 1.3 µm approaching gigahertz operation. Appl. Phys. Lett. 2008, 93, 021124.

    Article  Google Scholar 

  7. Zrenner, A.; Beham, E.; Stufler, S.; Findeis, F.; Bichler, M.; Abstreiter, G. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 2002, 418, 612–614.

    Article  Google Scholar 

  8. Mar, J. D.; Baumberg, J. J.; Xu, X. L.; Irvine, A. C.; Williams, D. A. Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields. Phys. Rev. B 2014, 90, 241303.

    Article  Google Scholar 

  9. Li, X. Q.; Wu, Y. W.; Steel, D.; Gammon, D.; Stievater, T. H.; Katzer, D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An all-optical quantum gate in a semiconductor quantum dot. Science 2003, 301, 809–811.

    Article  Google Scholar 

  10. De Greve, K.; Yu, L.; McMahon, P. L.; Pelc, J. S.; Natarajan, C. M.; Kim, N. Y.; Abe, E.; Maier, S.; Schneider, C.; Kamp, M. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 2012, 491, 421–425.

    Article  Google Scholar 

  11. Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L. M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 2013, 110, 167401.

    Article  Google Scholar 

  12. Webster, L. A.; Truex, K.; Duan, L. M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Coherent control to prepare an InAs quantum dot for spin-photon entanglement. Phys. Rev. Lett. 2014, 112, 126801.

    Article  Google Scholar 

  13. Ediger, M.; Bester, G.; Badolato, A.; Petroff, P. M.; Karrai, K.; Zunger, A.; Warburton, R. J. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nat. Phys. 2007, 3, 774–779.

    Article  Google Scholar 

  14. Tang, J.; Cao, S.; Gao, Y.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. Appl. Phys. Lett. 2014, 105, 041109.

    Article  Google Scholar 

  15. Van Hattem, B.; Corfdir, P.; Brereton, P.; Pearce, P.; Graham, A. M.; Stanley, M. J.; Hugues, M.; Hopkinson, M.; Phillips, R. T. From the artificial atom to the Kondo–Anderson model: Orientation-dependent magnetophotoluminescence of charged excitons in InAs quantum dots. Phys. Rev. B 2013, 87, 205308.

    Article  Google Scholar 

  16. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  17. Fuhrer, M. S.; Hone, J. Measurement of mobility in dualgated MoS2 transistors. Nat. Nano 2013, 8, 146–147.

    Article  Google Scholar 

  18. Hong, X. P.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nano 2014, 9, 682–686.

    Article  Google Scholar 

  19. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nano 2014, 9, 372–377.

    Article  Google Scholar 

  20. Latta, C.; Haupt, F.; Hanl, M.; Weichselbaum, A.; Claassen, M.; Wuester, W.; Fallahi, P.; Faelt, S.; Glazman, L.; von Delft, J. et al. Quantum quench of Kondo correlations in optical absorption. Nature 2011, 474, 627–630.

    Google Scholar 

  21. Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Y.; Koenraad, P. M. Many-body exciton states in self-assembled quantum dots coupled to a fermi sea. Nat. Phys. 2010, 6, 534–538.

    Article  Google Scholar 

  22. Türeci, H. E.; Hanl, M.; Claassen, M.; Weichselbaum, A.; Hecht, T.; Braunecker, B.; Govorov, A.; Glazman, L.; Imamoglu, A.; von Delft, J. Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards kondo correlations. Phys. Rev. Lett. 2011, 106, 107402.

    Article  Google Scholar 

  23. Govorov, A. O.; Karrai, K.; Warburton, R. J. Kondo excitons in self-assembled quantum dots. Phys. Rev. B 2003, 67, 241307.

    Article  Google Scholar 

  24. Zhang, W.; Govorov, A. O.; Bryant, G. W. Semiconductormetal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 2006, 97, 146804.

    Article  Google Scholar 

  25. Bar-Ad, S.; Kner, P.; Marquezini, M. V.; Mukamel, S.; Chemla, D. S. Quantum confined Fano interference. Phys. Rev. Lett. 1997, 78, 1363–1366.

    Article  Google Scholar 

  26. Kroner, M.; Govorov, A. O.; Remi, S.; Biedermann, B.; Seidl, S.; Badolato, A.; Petroff, P. M.; Zhang, W.; Barbour, R.; Gerardot, B. D. et al. The nonlinear Fano effect. Nature 2008, 451, 311–314.

    Google Scholar 

  27. Karrai, K.; Warburton, R. J.; Schulhauser, C.; Hö gele, A.; Urbaszek, B.; McGhee, E. J.; Govorov, A. O.; Garcia, J. M.; Gerardot, B. D.; Petroff, P. M. Hybridization of electronic states in quantum dots through photon emission. Nature 2004, 427, 135–138.

    Article  Google Scholar 

  28. Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J. Absorption and emission in quantum dots: Fermi surface effects of anderson excitons. Phys. Rev. B 2005, 72, 125301.

    Article  Google Scholar 

  29. Dalgarno, P. A.; Ediger, M.; Gerardot, B. D.; Smith, J. M.; Seidl, S.; Kroner, M.; Karrai, K.; Petroff, P. M.; Govorov, A. O.; Warburton, R. J. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett. 2008, 100, 176801.

    Article  Google Scholar 

  30. Hilario, L. M. L.; Aligia, A. A. Photoluminescence of a quantum dot hybridized with a continuum of extended states. Phys. Rev. Lett. 2009, 103, 156802.

    Article  Google Scholar 

  31. Mazur, Y. I.; Dorogan, V. G.; Guzun, D.; Marega, E.; Salamo, G. J.; Tarasov, G. G.; Govorov, A. O.; Vasa, P.; Lienau, C. Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy. Phys. Rev. B 2010, 82, 155413.

    Article  Google Scholar 

  32. Syperek, M.; Andrzejewski, J.; Rudno-Rudzinski, W.; Sek, G.; Misiewicz, J.; Pavelescu, E. M.; Gilfert, C.; Reithmaier, J. P. Influence of electronic coupling on the radiative lifetime in the (In, Ga)As/GaAs quantum dot-quantum well system. Phys. Rev. B 2012, 85, 125311.

    Article  Google Scholar 

  33. Leonard, D.; Pond, K.; Petroff, P. M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 1994, 50, 11687–11692.

    Article  Google Scholar 

  34. Eisenberg, H. R.; Kandel, D. Wetting layer thickness and early evolution of epitaxially strained thin films. Phys. Rev. Lett. 2000, 85, 1286–1289.

    Article  Google Scholar 

  35. Hugues, M.; Teisseire, M.; Chauveau, J. M.; Vinter, B.; Damilano, B.; Duboz, J. Y.; Massies, J. Optical determination of the effective wetting layer thickness and composition in InAs/Ga(In)As quantum dots. Phys. Rev. B 2007, 76, 075335.

    Article  Google Scholar 

  36. Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Splitting of excitons and biexcitons in coupled InAs quantum dot molecules. Appl. Phys. Lett. 2005, 86, 012103.

    Article  Google Scholar 

  37. Nash, K. J.; Skolnick, M. S.; Claxton, P. A.; Roberts, J. S. Diamagnetism as a probe of exciton localization in quantum wells. Phys. Rev. B 1989, 39, 10943–10954.

    Article  Google Scholar 

  38. Walck, S. N.; Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B 1998, 57, 9088–9096.

    Article  Google Scholar 

  39. Tsai, M.-F.; Lin, H.; Lin, C.-H.; Lin, S.-D.; Wang, S.-Y.; Lo, M.-C.; Cheng, S.-J.; Lee, M.-C.; Chang, W.-H. Diamagnetic response of exciton complexes in semiconductor quantum dots. Phys. Rev. Lett. 2008, 101, 267402.

    Article  Google Scholar 

  40. Fu, Y. J.; Lin, S. D.; Tsai, M. F.; Lin, H.; Lin, C. H.; Chou, H. Y.; Cheng, S. J.; Chang, W. H. Anomalous diamagnetic shift for negative trions in single semiconductor quantum dots. Phys. Rev. B 2010, 81, 113307.

    Article  Google Scholar 

  41. Schulhauser, C.; Haft, D.; Warburton, R. J.; Karrai, K.; Govorov, A. O.; Kalameitsev, A. V.; Chaplik, A.; Schoenfeld, W.; Garcia, J. M.; Petroff, P. M. Magneto-optical properties of charged excitons in quantum dots. Phys. Rev. B 2002, 66, 193303.

    Article  Google Scholar 

  42. Cao, S.; Tang, J.; Gao, Y.; Sun, Y.; Qiu, K. S.; Zhao, Y. H.; He, M.; Shi, J. A.; Gu, L.; Williams, D. A. et al. Longitudinal wave function control in single quantum dots with an applied magnetic field. Sci. Rep. 2015, 5, 8041.

    Google Scholar 

  43. Babinski, A.; Ortner, G.; Raymond, S.; Potemski, M.; Bayer, M.; Sheng, W.; Hawrylak, P.; Wasilewski, Z.; Fafard, S.; Forchel, A. Ground-state emission from a single InAs/GaAs self-assembled quantum dot structure in ultrahigh magnetic fields. Phys. Rev. B 2006, 74, 075310.

    Article  Google Scholar 

  44. Someya, T.; Akiyama, H.; Sakaki, H. Laterally squeezed excitonic wave function in quantum wires. Phys. Rev. Lett. 1995, 74, 3664–3667.

    Article  Google Scholar 

  45. Mensing, T.; Reitzenstein, S.; Lö ffler, A.; Reithmaier, J. P.; Forchel, A. Magnetooptical investigations of single self assembled In0.3Ga0.7As quantum dots. Phys. E: Low-Dimens. Sys. Nanostruct. 2006, 32, 131–134.

    Article  Google Scholar 

  46. Mahan, G. D. Excitons in degenerate semiconductors. Phys. Rev. 1967, 153, 882–889.

    Article  Google Scholar 

  47. Finkelstein, G.; Shtrikman, H.; Bar-Joseph, I. Shakeup processes in the recombination spectra of negatively charged excitons. Phys. Rev. B 1996, 53, 12593–12596.

    Article  Google Scholar 

  48. Kheng, K.; Cox, R. T.; d’Aubigné, M. Y.; Bassani, F.; Saminadayar, K.; Tatarenko, S. Observation of negatively charged excitons X- in semiconductor quantum wells. Phys. Rev. Lett. 1993, 71, 1752–1755.

    Article  Google Scholar 

  49. Toft, I.; Phillips, R. T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure. Phys. Rev. B 2007, 76, 033301.

    Article  Google Scholar 

  50. Brunner, D.; Gerardot, B. D.; Dalgarno, P. A.; Wüst, G.; Karrai, K.; Stoltz, N. G.; Petroff, P. M.; Warburton, R. J. A coherent single-hole spin in a semiconductor. Science 2009, 325, 70–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuijuan Jin or Xiulai Xu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Tang, J., Sun, Y. et al. Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects. Nano Res. 9, 306–316 (2016). https://doi.org/10.1007/s12274-015-0910-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0910-z

Keywords

  • magnetophotoluminescence
  • InAs quantum dots
  • wetting layer
  • strong diamagnetic effects