Nano Research

, Volume 9, Issue 2, pp 273–281 | Cite as

Nano-confinement of biomolecules: Hydrophilic confinement promotes structural order and enhances mobility of water molecules

Research Article

Abstract

Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation.

Keywords

nano-confinement protein folding hydration water carbon nanotube drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_907_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1570 KB.

References

  1. [1]
    Cass, T.; Ligler, F. S. Immobilized Biomolecules in Analysis: A Practical Approach; Oxford University Press: Oxford, 1998.Google Scholar
  2. [2]
    Imasaka, K.; Kato, Y.; Suehiro, J. Enhancement of microplasmabased water-solubilization of single-walled carbon nanotubes using gas bubbling in water. Nanotechnology 2007, 18, 335602.CrossRefGoogle Scholar
  3. [3]
    Wallace, E. J.; Sansom, M. S. P. Carbon nanotube selfassembly with lipids and detergent: A molecular dynamics study. Nanotechnology 2009, 20, 045101.CrossRefGoogle Scholar
  4. [4]
    Pantarotto, D.; Briand, J. P.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16–17.Google Scholar
  5. [5]
    Kam, N. W. S.; Dai, H. J. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 2005, 127, 6021–6026.CrossRefGoogle Scholar
  6. [6]
    Zhang, S. Q.; Cheung, M. S. Manipulating biopolymer dynamics by anisotropic nanoconfinement. Nano Lett. 2007, 7, 3438–3442.CrossRefGoogle Scholar
  7. [7]
    Sorin, E. J.; Pande, V. S. Nanotube confinement denatures protein helices. J. Am. Chem. Soc. 2006, 128, 6316–6317.CrossRefGoogle Scholar
  8. [8]
    O’Brien, E. P.; Stan, G.; Thirumalai, D.; Brooks, B. R. Factors governing helix formation in peptides confined to carbon nanotubes. Nano Lett. 2008, 8, 3702–3708.CrossRefGoogle Scholar
  9. [9]
    Trzaskowski, B.; Jalbout, A. F.; Adamowicz, L. Molecular dynamics studies of protein-fragment models encapsulated into carbon nanotubes. Chem. Phys. Lett. 2006, 430, 97–100.CrossRefGoogle Scholar
  10. [10]
    Liu, Z.; Yanagi, K.; Suenaga, K.; Kataura, H.; Lijima, S. Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat. Nanotechnol. 2007, 2, 422–425.CrossRefGoogle Scholar
  11. [11]
    Kolesnikov, A. I.; Zanotti, J. M.; Loong, C. K.; Thiyagarajan P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 2004, 93, 035503.CrossRefGoogle Scholar
  12. [12]
    Paineau, E.; Albouy, P. A.; Rouzière, S.; Orecchini, A.; Rols, S.; Launois, P. X-ray scattering determination of the structure of water during carbon nanotube filling. Nano Lett. 2013, 13, 1751–1756.Google Scholar
  13. [13]
    Russo, D.; Ollivier, J.; Teixeira, J. Water hydrogen bond analysis on hydrophilic and hydrophobic biomolecule sites. Phys. Chem. Chem. Phys. 2008, 10, 4968–4974.CrossRefGoogle Scholar
  14. [14]
    Russo, D.; Baglioni, P.; Peroni, E.; Teixeira, J. Hydration water dynamics of a completely hydrophobic oligopeptide. Chem. Phys. 2003, 292, 235–245.CrossRefGoogle Scholar
  15. [15]
    Russo, D.; Hura, G. L.; Copley, J. R. D. Effects of hydration water on protein methyl group dynamics in solution. Phys. Rev. E 2007, 75, 040902.CrossRefGoogle Scholar
  16. [16]
    Russo, D.; Teixeira, J.; Ollivier, J. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: From dry powder to highly concentrated solutions. J. Chem. Phys. 2009, 130, 235101.CrossRefGoogle Scholar
  17. [17]
    Russo, D. The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution. Chem. Phys. 2008, 345, 200–211.CrossRefGoogle Scholar
  18. [18]
    Russo, D.; Copley, J. R. D.; Ollivier, J.; Teixeira, J. On the behaviour of water hydrogen bonds at biomolecular sites: Dependences on temperature and on network dimensionality. J. Mol. Struct. 2010, 972, 81–86.CrossRefGoogle Scholar
  19. [19]
    Russo, D.; Hura, G.; Head-Gordon, T. Hydration dynamics near a model protein surface. Biophys. J. 2004, 86, 1852–1862.CrossRefGoogle Scholar
  20. [20]
    Hura, G.; Sorenson, J. M.; Glaeser, R. M.; Head-Gordon, T. Solution X-ray scattering as a probe of hydration-dependent structuring of aqueous solutions. Perspect. Drug Discov. Design 1999, 17, 97–118.CrossRefGoogle Scholar
  21. [21]
    Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802.CrossRefGoogle Scholar
  22. [22]
    MacKerell, A. D. Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L. Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616.CrossRefGoogle Scholar
  23. [23]
    MacKerell, A. D. Jr.; Feig, M.; Brooks, C. L. 3rd. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400–1415.CrossRefGoogle Scholar
  24. [24]
    Sisan, T. B.; Lichter, S. Solitons transport water through narrow carbon nanotubes. Phys. Rev. Lett. 2014, 112, 044501.CrossRefGoogle Scholar
  25. [25]
    Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073.CrossRefGoogle Scholar
  26. [26]
    Whitby, M.; Cagnon, L.; Thanou, M.; Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 2008, 8, 2632–2637.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Argonne National LaboratoryChicagoUSA
  2. 2.CNR-IOM, c/o Institut Laue-LangevinGrenobleFrance
  3. 3.Institut Lumière MatièreUniversité de LyonLyonFrance

Personalised recommendations