Nano Research

, Volume 8, Issue 12, pp 3944–3953 | Cite as

Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus

  • Yanlong Wang
  • Chunxiao Cong
  • Ruixiang Fei
  • Weihuang Yang
  • Yu Chen
  • Bingchen Cao
  • Li YangEmail author
  • Ting YuEmail author
Research Article


Black phosphorus (BP) is a good candidate for studying strain effects on twodimensional (2D) materials beyond graphene and transition-metal dichalcogenides. This is because of its particular ability to sustain high strain and remarkably anisotropic mechanical properties resulting from its unique puckered structure. We here investigate the dependence of lattice vibrational frequencies on crystallographic orientations in uniaxially strained few-layer BP by in-situ strained Raman spectroscopy. The out-of-plane A1 g mode is sensitive to uniaxial strain along the near-armchair direction whereas the in-plane B2g and A2 g modes are sensitive to strain in the near-zigzag direction. For uniaxial strains applied away from these directions, all three phonon modes are linearly redshifted. Our experimental observation is explained by the anisotropic influence of uniaxial tensile strain on structural properties of BP using density functional theory. This study demonstrates the possibility of selective tuning of in-plane and out-of-plane phonon modes in BP by uniaxial strain and makes strain engineering a promising avenue for extensively modulating the optical and mechanical properties of 2D materials.


black phosphorus uniaxial strain Raman spectroscopy anisotropy density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_895_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1444 KB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  2. [2]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  3. [3]
    Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.CrossRefGoogle Scholar
  4. [4]
    Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Nonblinking, intense twodimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985–10994.CrossRefGoogle Scholar
  5. [5]
    Cooper, R. C.; Lee, C.; Marianetti, C. A.; Wei, X. D.; Hone, J.; Kysar, J. W. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 2013, 87, 035423.CrossRefGoogle Scholar
  6. [6]
    Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.CrossRefGoogle Scholar
  7. [7]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar
  8. [8]
    Liang, X. G.; Fu, Z. L.; Chou, S. Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 2007, 7, 3840–3844.CrossRefGoogle Scholar
  9. [9]
    Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.CrossRefGoogle Scholar
  10. [10]
    Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing highperformance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.CrossRefGoogle Scholar
  11. [11]
    Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.CrossRefGoogle Scholar
  12. [12]
    Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.CrossRefGoogle Scholar
  13. [13]
    Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.Google Scholar
  14. [14]
    Qiao, J. S.; Kong, X. H.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.Google Scholar
  15. [15]
    Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366–2369.CrossRefGoogle Scholar
  16. [16]
    Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Castro Neto, A. H. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270–4276.CrossRefGoogle Scholar
  17. [17]
    Qin, G. Z.; Yan, Q. B.; Qin, Z. Z.; Yue, S. Y.; Hu, M.; Su, G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 2015, 17, 4854–4858.CrossRefGoogle Scholar
  18. [18]
    Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.CrossRefGoogle Scholar
  19. [19]
    Fei, R. X.; Yang, L. Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 2014, 105, 083120.CrossRefGoogle Scholar
  20. [20]
    Hu, T.; Han, Y.; Dong, J. M. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology 2014, 25, 455703.CrossRefGoogle Scholar
  21. [21]
    Jiang, J. W.; Park, H. S. Negative poisson’s ratio in singlelayer black phosphorus. Nat. Commun. 2014, 5, 4727.Google Scholar
  22. [22]
    Wei, Q.; Peng, X. H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915.CrossRefGoogle Scholar
  23. [23]
    Yu, T.; Ni, Z. H.; Du, C. L.; You, Y. M.; Wang, Y. Y.; Shen, Z. X. Raman mapping investigation of graphene on transparent flexible substrate: The strain effect. J. Phys. Chem. C 2008, 112, 12602–12605.CrossRefGoogle Scholar
  24. [24]
    Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.CrossRefGoogle Scholar
  25. [25]
    Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.CrossRefGoogle Scholar
  26. [26]
    Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 7304–7308.CrossRefGoogle Scholar
  27. [27]
    Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tightbinding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.CrossRefGoogle Scholar
  28. [28]
    Kou, L. Z.; Tang, C.; Guo, W. L.; Chen, C. F. Tunable magnetism in strained graphene with topological line defect. ACS Nano 2011, 5, 1012–1017.CrossRefGoogle Scholar
  29. [29]
    Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857–2861.CrossRefGoogle Scholar
  30. [30]
    Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.CrossRefGoogle Scholar
  31. [31]
    Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.CrossRefGoogle Scholar
  32. [32]
    He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.CrossRefGoogle Scholar
  33. [33]
    Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.CrossRefGoogle Scholar
  34. [34]
    Zhang, Q. Y.; Cheng, Y. C.; Gan, L.-Y.; Schwingenschlögl, U. Giant valley drifts in uniaxially strained monolayer MoS2. Phys. Rev. B 2013, 88, 245447.CrossRefGoogle Scholar
  35. [35]
    Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301.CrossRefGoogle Scholar
  36. [36]
    Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 2012, 6, 5449–5456.CrossRefGoogle Scholar
  37. [37]
    Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered direct–indirect band gap transition and its mechanism in twodimensional phosphorene. Phys. Rev. B 2014, 90, 085402.CrossRefGoogle Scholar
  38. [38]
    Fei, R. X.; Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014, 14, 2884–2889.CrossRefGoogle Scholar
  39. [39]
    Li, Y.; Yang, S. X.; Li, J. B. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field. J. Phys. Chem. C 2014, 118, 23970–23976.CrossRefGoogle Scholar
  40. [40]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  41. [41]
    Qin, G. Z.; Yan, Q. B.; Qin, Z. Z.; Yue, S. Y.; Cui, H. J.; Zheng, Q. R.; Su, G. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 2014, 4, 6946.CrossRefGoogle Scholar
  42. [42]
    Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080–4088.CrossRefGoogle Scholar
  43. [43]
    Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755.CrossRefGoogle Scholar
  44. [44]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  45. [45]
    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  46. [46]
    Li, S.-L.; Miyazaki, H.; Song, H. S.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 2012, 6, 7381–7388.CrossRefGoogle Scholar
  47. [47]
    Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater. 2012, 22, 1894–1905.CrossRefGoogle Scholar
  48. [48]
    Cong, C. X.; Yu, T.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm-1. ACS Nano 2011, 5, 1600–1605.CrossRefGoogle Scholar
  49. [49]
    Cong, C. X.; Yu, T.; Sato, K.; Shang, J. Z.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 2011, 5, 8760–8768.CrossRefGoogle Scholar
  50. [50]
    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.CrossRefGoogle Scholar
  51. [51]
    Ni, Z. H.; Liu, L.; Wang, Y. Y.; Zheng, Z.; Li, L.-J.; Yu, T.; Shen, Z. X. G-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding. Phys. Rev. B 2009, 80, 125404.CrossRefGoogle Scholar
  52. [52]
    Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.CrossRefGoogle Scholar
  53. [53]
    Cong, C. X.; Yu, T.; Wang, H. M. Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 2010, 4, 3175–3180.CrossRefGoogle Scholar
  54. [54]
    You, Y. M.; Ni, Z. H.; Yu, T.; Shen, Z. X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112.CrossRefGoogle Scholar
  55. [55]
    Wang, Y. Y.; Ni, Z. H.; Liu, L.; Liu, Y. H.; Cong, C. X.; Yu, T.; Wang, X. J.; Shen, D. Z.; Shen, Z. X. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 2010, 4, 4074–4080.CrossRefGoogle Scholar
  56. [56]
    Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.CrossRefGoogle Scholar
  57. [57]
    Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.CrossRefGoogle Scholar
  58. [58]
    Late, D. J.; Shirodkar, S. N.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2. Chemphyschem 2014, 15, 1592–1598.CrossRefGoogle Scholar
  59. [59]
    Late, D. J.; Maitra, U.; Panchakarla, L. S.; Waghmare, U. V.; Rao, C. N. R. Temperature effects on the Raman spectra of graphenes: Dependence on the number of layers and doping. J. Phys.: Condens. Mat. 2011, 23, 055303.Google Scholar
  60. [60]
    Nagaleekar, T. M.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158–1163.CrossRefGoogle Scholar
  61. [61]
    Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y.-W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.CrossRefGoogle Scholar
  62. [62]
    Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.CrossRefGoogle Scholar
  63. [63]
    Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.CrossRefGoogle Scholar
  64. [64]
    Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. M.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853–859.CrossRefGoogle Scholar
  65. [65]
    Late, D. J. Temperature dependent phonon shifts in fewlayer black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 5857–5862.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yanlong Wang
    • 1
  • Chunxiao Cong
    • 1
  • Ruixiang Fei
    • 2
  • Weihuang Yang
    • 1
  • Yu Chen
    • 1
  • Bingchen Cao
    • 1
  • Li Yang
    • 2
    Email author
  • Ting Yu
    • 1
    • 3
    Email author
  1. 1.Division of Physics and Applied PhysicsSchool of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore CitySingapore
  2. 2.Department of PhysicsWashington University in St. LouisSt. LouisUSA
  3. 3.Department of PhysicsFaculty of Science, National University of SingaporeSingapore CitySingapore

Personalised recommendations