Nano Research

, Volume 8, Issue 10, pp 3430–3445 | Cite as

Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors

  • Ashok K. Sundramoorthy
  • Yi-Cheng Wang
  • Sundaram Gunasekaran
Research Article

Abstract

Single-walled carbon nanotubes (SWNTs) possess high conductivity, mechanical strength, transparency, and flexibility, and are thus suitable for use in flexible electronics, transparent electrodes, and energy-storage and energy-harvesting applications. However, to exploit these properties, SWNTs must be de-bundled in a surfactant solution to permit processing and use. We report a new method to prepare a SWNT-based transparent conducting film (TCF) using the diazo dye 3,3′-([1,1′-biphenyl]-4,4′-diyl)bis(4-amino naphthalene-1-sulfonic acid), commonly known as Congo red (CR), as a dispersant. Uniform 20-nm-thick TCFs were prepared on rigid glass and flexible polyethylene terephthalate (PET) substrates. The CR-SWNT dispersion and the CR-SWNT TCFs were characterized via UV-Vis-NIR, Raman spectroscopy, FT-IR spectroscopy, transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS) measurements. The sheet resistivity of the CRSWNT TCF was ~34 ± 6.6 Ω/□ with a transmittance of 81% at 550 nm, comparable to that of indium tin oxide-based films. Unlike SWNT dispersions prepared in common surfactants, such as sodium dodecyl sulfate (SDS), sodium cholate (SC), and Triton X-100, the CR-SWNT dispersion was amenable to forming TCF by drop coating. The CR-SWNT TCF was also very stable, maintaining a very low sheet resistivity even after 1,000 consecutive bending cycles of 8 mm bending radius. Further, manganese dioxide (MnO2) was electrochemically deposited on the CR-SWNT-PET film (MnO2-CR-SWNT-PET). The as-prepared MnO2-CR-SWNT-PET electrode exhibited high specific capacitance and bendability, demonstrating promise as a candidate electrode material for flexible supercapacitors.

Keywords

transparent electrode manganese dioxide carbon nanotube Congo red flexible electronics supercapacitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_880_MOESM1_ESM.pdf (2.7 mb)
Supplementary material, approximately 2767 KB.

References

  1. [1]
    Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809–817.CrossRefGoogle Scholar
  2. [2]
    Angmo, D.; Krebs, F. C. Flexible ITO-free polymer solar cells. J. Appl. Polym. Sci. 2013, 129, 1–14.CrossRefGoogle Scholar
  3. [3]
    Lewis, J. Material challenge for flexible organic devices. Mater. Today 2006, 9, 38–45.CrossRefGoogle Scholar
  4. [4]
    Ghaffarzadeh, K.; Das, R. Transparent Conductive Films (TCF) 2014–2024: Forecasts, Markets, Technologies; DTechEx: London, 2014.Google Scholar
  5. [5]
    Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.CrossRefGoogle Scholar
  6. [6]
    Xia, Y. J.; Sun, K.; Ouyang, J. Y. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440.CrossRefGoogle Scholar
  7. [7]
    Kiruthika, S.; Gupta, R.; Rao, K. D. M.; Chakraborty, S.; Padmavathy, N.; Kulkarni, G. U. Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J. Mater. Chem. C 2014, 2, 2089–2094.CrossRefGoogle Scholar
  8. [8]
    Guo, C. F.; Sun, T. Y.; Liu, Q. H.; Suo, Z. G.; Ren, Z. F. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 2014, 5, 3121.Google Scholar
  9. [9]
    Hsu, P.-C.; Wu, H.; Carney, T. J.; McDowell, M. T.; Yang, Y.; Garnett, E. C.; Li, M.; Hu, L. B.; Cui, Y. Passivation coating on electrospun copper nanofibers for stable transparent electrodes. ACS Nano 2012, 6, 5150–5156.CrossRefGoogle Scholar
  10. [10]
    Liu, Q. F.; Fujigaya, T.; Cheng, H. M.; Nakashima, N. Freestanding highly conductive transparent ultrathin single-walled carbon nanotube films. J. Am. Chem. Soc. 2010, 132, 16581–16586.CrossRefGoogle Scholar
  11. [11]
    Ho, X. N.; Wei, J. Films of carbon nanomaterials for transparent conductors. Materials 2013, 6, 2155–2181.CrossRefGoogle Scholar
  12. [12]
    De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.CrossRefGoogle Scholar
  13. [13]
    Rösner, B.; Guldi, D. M.; Chen, J.; Minett, A. I.; Fink, R. H. Dispersion and characterization of arc discharge single-walled carbon nanotubes - Towards conducting transparent films. Nanoscale 2014, 6, 3695–3703.CrossRefGoogle Scholar
  14. [14]
    Mistry, K. S.; Larsen, B. A.; Bergeson, J. D.; Barnes, T. M.; Teeter, G.; Engtrakul, C.; Blackburn, J. L. n-Type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes. ACS Nano 2011, 5, 3714–3723.CrossRefGoogle Scholar
  15. [15]
    Wang, J.; Zhang, J. T.; Sundramoorthy, A. K.; Chen, P.; Chan-Park, M. B. Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films. Nanoscale 2014, 6, 4560–4565.CrossRefGoogle Scholar
  16. [16]
    Yang, S. B.; Kong, B. S.; Jung, D. H.; Baek, Y. K.; Han, C. S.; Oh, S. K.; Jung, H. T. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 2011, 3, 1361–1373.CrossRefGoogle Scholar
  17. [17]
    Park, S.; Vosguerichian, M.; Bao, Z. A. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752.CrossRefGoogle Scholar
  18. [18]
    Wang, X. H.; Tao, L.; Hao, Y. F.; Liu, Z. H.; Chou, H.; Kholmanov, I.; Chen, S. S.; Tan, C.; Jayant, N.; Yu, Q. K. et al. Direct delamination of graphene for high-performance plastic electronics. Small 2014, 10, 694–698.CrossRefGoogle Scholar
  19. [19]
    Wang, P.-C.; Liu, L.-H.; Alemu Mengistie, D.; Li, K.-H.; Wen, B.-J.; Liu, T.-S.; Chu, C.-W. Transparent electrodes based on conducting polymers for display applications. Displays 2013, 34, 301–314.CrossRefGoogle Scholar
  20. [20]
    Hu, L. B.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.CrossRefGoogle Scholar
  21. [21]
    Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2003, 4, 35–39.CrossRefGoogle Scholar
  22. [22]
    Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.CrossRefGoogle Scholar
  23. [23]
    Zhang, D. H.; Ryu, K.; Liu, X. L.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. W. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.CrossRefGoogle Scholar
  24. [24]
    Yim, J. H.; Kim, Y. S.; Koh, K. H.; Lee, S. Fabrication of transparent single wall carbon nanotube films with low sheet resistance. J. Vac. Sci. Technol. B 2008, 26, 851–855.CrossRefGoogle Scholar
  25. [25]
    Tyler, T. P.; Brock, R. E.; Karmel, H. J.; Marks, T. J.; Hersam, M. C. Electronically monodisperse single-walled carbon nanotube thin films as transparent conducting anodes in organic photovoltaic devices. Adv. Energy Mater. 2011, 1, 785–791.CrossRefGoogle Scholar
  26. [26]
    Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21, 3210–3216.CrossRefGoogle Scholar
  27. [27]
    Jung, H.; Yu, J. S.; Lee, H. P.; Kim, J. M.; Park, J. Y.; Kim, D. Ascalable fabrication of highly transparent and conductive thin films using fluorosurfactant-assisted single-walled carbon nanotube dispersions. Carbon 2013, 52, 259–266.CrossRefGoogle Scholar
  28. [28]
    Yang, S. B.; Kong, B. S.; Jung, H. T. Multistep deposition of gold nanoparticles on single-walled carbon nanotubes for high-performance transparent conducting films. J. Phys. Chem. C 2012, 116, 25581–25587.CrossRefGoogle Scholar
  29. [29]
    Tkalya, E. E.; Ghislandi, M.; de With, G.; Koning, C. E. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 2012, 17, 225–231.CrossRefGoogle Scholar
  30. [30]
    Kymakis, E.; Amaratunga, G. A. J. Electrical properties of single-wall carbon nanotube-polymer composite films. J. Appl. Phys. 2006, 99, 084302.CrossRefGoogle Scholar
  31. [31]
    Rahman, R.; Servati, P. Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 2012, 23, 055703.CrossRefGoogle Scholar
  32. [32]
    Geng, H.-Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotubebased flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.CrossRefGoogle Scholar
  33. [33]
    Jin, R.; Zhou, Z. X.; Mandrus, D.; Ivanov, I. N.; Eres, G.; Howe, J. Y.; Puretzky, A. A.; Geohegan, D. B. The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes. Phys. B 2007, 388, 326–330.CrossRefGoogle Scholar
  34. [34]
    Zhang, Q. H.; Vichchulada, P.; Shivareddy, S. B.; Lay, M. D. Reducing electrical resistance in single-walled carbon nanotube networks: Effect of the location of metal contacts and low-temperature annealing. J. Mater. Sci. 2012, 47, 3233–3240.CrossRefGoogle Scholar
  35. [35]
    Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.CrossRefGoogle Scholar
  36. [36]
    Dumitrescu, I.; Wilson, N. R.; Macpherson, J. V. Functionalizing single-walled carbon nanotube networks: Effect on electrical and electrochemical properties. J. Phys. Chem. C 2007, 111, 12944–12953.CrossRefGoogle Scholar
  37. [37]
    Lobez, J. M.; Han, S.-J.; Afzali, A.; Hannon, J. B. Surface selective one-step fabrication of carbon nanotube thin films with high density. ACS Nano 2014, 8, 4954–4960.CrossRefGoogle Scholar
  38. [38]
    Nirmalraj, P. P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.CrossRefGoogle Scholar
  39. [39]
    Hu, C. G.; Chen, Z. L.; Shen, A. G.; Shen, X. C.; Li, J.; Hu, S. S. Water-soluble single-walled carbon nanotubes via noncovalent functionalization, by arigid, planar and conjugated diazo dye. Carbon 2006, 44, 428–434.CrossRefGoogle Scholar
  40. [40]
    Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.CrossRefGoogle Scholar
  41. [41]
    Fei, H. J.; Yang, C. Y.; Bao, H.; Wang, G. C. Flexible allsolid- state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)–H2SO4 porous gel electrolytes. J. Power Sources 2014, 266, 488–495.CrossRefGoogle Scholar
  42. [42]
    Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.CrossRefGoogle Scholar
  43. [43]
    Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.Google Scholar
  44. [44]
    Liu, F.; Song, S. Y.; Xue, D. F.; Zhang, H. J. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094.CrossRefGoogle Scholar
  45. [45]
    Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.Google Scholar
  46. [46]
    Li, H.; Zhao, Q.; Wang, W.; Dong, H.; Xu, D. S.; Zou, G. J.; Duan, H. L.; Yu, D. P. Novel planar-structure electrochemical devices for highly flexible semitransparent power generation/storage Sources. Nano Lett. 2013, 13, 1271–1277.CrossRefGoogle Scholar
  47. [47]
    Miller, J. R. Valuing reversible energy storage. Science 2012, 335, 1312–1313.CrossRefGoogle Scholar
  48. [48]
    Ge, J.; Cheng, G. H.; Chen, L. W. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3, 3084–3088.CrossRefGoogle Scholar
  49. [49]
    He, S. J.; Chen, W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 2014, 262, 391–400.CrossRefGoogle Scholar
  50. [50]
    Cai, W. H.; Lai, T.; Dai, W. L.; Ye, J. S. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids. J. Power Sources 2014, 255, 170–178.CrossRefGoogle Scholar
  51. [51]
    Shi, C. L.; Zhao, Q.; Li, H.; Liao, Z.-M.; Yu, D. P. Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage. Nano Energy 2014, 6, 82–91.CrossRefGoogle Scholar
  52. [52]
    Li, W. Y.; Xu, K. B.; Li, B.; Sun, J. Q.; Jiang, F. R.; Yu, Z. S.; Zou, R. J.; Chen, Z. G.; Hu, J. Q. MnO2 nanoflower arrays with high rate capability for flexible supercapacitors. ChemElectroChem 2014, 1, 1003–1008.CrossRefGoogle Scholar
  53. [53]
    Cole, D. P.; Reddy, A. L. M.; Hahm, M. G.; McCotter, R.; Hart, A. H. C.; Vajtai, R.; Ajayan, P. M.; Karna, S. P.; Bundy, M. L. Electromechanical properties of polymer electrolytebased stretchable supercapacitors. Adv. Energy Mater. 2014, 4, 1300844.CrossRefGoogle Scholar
  54. [54]
    Seo, J. W. T.; Yoder, N. L.; Shastry, T. A.; Humes, J. J.; Johns, J. E.; Green, A. A.; Hersam, M. C. Diameter refinement of semiconducting arc discharge single-walled carbon nanotubes via density gradient ultracentrifugation. J. Phys. Chem. Lett. 2013, 4, 2805–2810.CrossRefGoogle Scholar
  55. [55]
    Sundramoorthy, A. K.; Mesgari, S.; Wang, J.; Kumar, R.; Sk, M. A.; Yeap, S. H.; Zhang, Q.; Sze, S. K.; Lim, K. H.; Chan-Park, M. B. Scalable and effective enrichment of semiconducting single-walled carbon nanotubes, by adual selective naphthalene-based azo dispersant. J. Am. Chem. Soc. 2013, 135, 5569–5581.CrossRefGoogle Scholar
  56. [56]
    Li, J. B.; Huang, Y. X.; Chen, P.; Chan-Park, M. B. In situ charge-transfer-induced transition from metallic to semiconducting single-walled carbon nanotubes. Chem. Mater. 2013, 25, 4464–4470.CrossRefGoogle Scholar
  57. [57]
    Mesgari, S.; Sundramoorthy, A. K.; Loo, L. S.; Chan-Park, M. B. Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes. Faraday Discuss. 2014, 173, 351–363.CrossRefGoogle Scholar
  58. [58]
    Zhang, W.; Silva, S. R. P. Raman and FT-IR studies on dye-assisted dispersion and flocculation of single walled carbon nanotubes. Spectroc. Acta A 2010, 77, 175–178.CrossRefGoogle Scholar
  59. [59]
    Shin, H.-J.; Kim, S. M.; Yoon, S.-M.; Benayad, A.; Kim, K. K.; Kim, S. J.; Park, H. K.; Choi, J.-Y.; Lee, Y. H. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 2008, 130, 2062–2066.CrossRefGoogle Scholar
  60. [60]
    Sa, V.; Kornev, K. G. Analysis of stability of nanotube dispersions using surface tension isotherms. Langmuir 2011, 27, 13451–13460.CrossRefGoogle Scholar
  61. [61]
    Matarredona, O.; Rhoads, H.; Li, Z. R.; Harwell, J. H.; Balzano, L.; Resasco, D. E. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357–13367.CrossRefGoogle Scholar
  62. [62]
    Li, F. H.; Bao, Y.; Chai, J.; Zhang, Q. X.; Han, D. X.; Niu, L. Synthesis and application of widely soluble graphene sheets. Langmuir 2010, 26, 12314–12320.Google Scholar
  63. [63]
    Frid, P.; Anisimov, S. V.; Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Rev. 2007, 53, 135–160.CrossRefGoogle Scholar
  64. [64]
    Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M. Highperformance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 2012, 6, 9737–9744.CrossRefGoogle Scholar
  65. [65]
    Gao, H. J.; Izquierdo, R.; Truong, V. V. Chemical vapor doping of transparent and conductive films of carbon nanotubes. Chem. Phys. Lett. 2012, 546, 109–114.CrossRefGoogle Scholar
  66. [66]
    Dupont, M. F.; Donne, S. W. Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors. Electrochim. Acta 2014, 120, 219–225.CrossRefGoogle Scholar
  67. [67]
    Le, W.-Z.; Liu, Y.-Q.; Hu, G.-Q. Preparation of manganese dioxide modified glassy carbon electrode, by anovel film plating/cyclic voltammetry method for H2O2 detection. J. Chil. Chem. Soc. 2009, 54, 366–371.Google Scholar
  68. [68]
    Aboutalebi, S. H.; Chidembo, A. T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H. K.; Dou, S. X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 2011, 4, 1855–1865.CrossRefGoogle Scholar
  69. [69]
    Feng, L.; Xuan, Z.; Zhao, H.; Bai, Y.; Guo, J.; Su, C.-W.; Chen, X. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res. Lett. 2014, 9, 290.CrossRefGoogle Scholar
  70. [70]
    Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y.; Zeng, Y. Q. Electrochemical properties of nanosized hydrous manganese dioxide synthesized, by aself-reacting microemulsion method. J. Power Sources 2008, 180, 664–670.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ashok K. Sundramoorthy
    • 1
  • Yi-Cheng Wang
    • 1
  • Sundaram Gunasekaran
    • 1
  1. 1.Department of Biological Systems EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations