Nano Research

, Volume 8, Issue 11, pp 3737–3748 | Cite as

Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts

Research Article

Abstract

Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activation pathway with the assistance of hydrogen-containing substrates using density functional theory. It is demonstrated that the co-adsorbed H-containing substrates (R–H) not only enhance the adsorption of O2, but also transfer a hydrogen atom to the adjacent O2, leading to O2 activation by its transformation to a hydroperoxyl (OOH) radical species. The activation barriers of the H-transfer from 16 selected R–H compounds (H2O, CH3OH, NH2CHCOOH, CH3CH=CH2, (CH3)2SiH2, etc.) to the co-adsorbed O2 are lower than 0.50 eV in most cases, indicating the feasibility of the activation of O2 via OOH under mild conditions. The formed OOH oxidant, with an increased O–O bond length of ~1.45 Å, either participates directly in oxidation reactions through the end-on oxygen atom, or dissociates into atomic oxygen and hydroxyl (OH) by crossing a fairly low energy barrier of 0.24 eV. Using CO oxidation as a probe, we have found that OOH has superior activity than activated O2 and atomic oxygen. This study reveals a new pathway for the activation of O2, and may provide insight into the oxidation catalysis of nanosized gold.

Keywords

O2 activation gold cluster adsorption dissociation hydroperoxyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.CrossRefGoogle Scholar
  2. [2]
    Hutchings, G. J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295.CrossRefGoogle Scholar
  3. [3]
    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.CrossRefGoogle Scholar
  4. [4]
    Nijhuis, T. A.; Visser, T.; Weckhuysen, B. M. Mechanistic study into the direct epoxidation of propene over gold/titania catalysts. J. Phys. Chem. B 2005, 109, 19309–19319.CrossRefGoogle Scholar
  5. [5]
    Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. Catalysis by gold nanoparticles: Epoxidation of propene. Top. Catal. 2004, 29, 95–102.CrossRefGoogle Scholar
  6. [6]
    McEwan, L.; Julius, M.; Roberts, S.; Fletcher, J. C. Q. A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bull. 2010, 43, 298–306.CrossRefGoogle Scholar
  7. [7]
    Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.CrossRefGoogle Scholar
  8. [8]
    Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 2008, 37, 2077–2095.CrossRefGoogle Scholar
  9. [9]
    Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.CrossRefGoogle Scholar
  10. [10]
    Bond, G. Mechanisms of the gold-catalysed water-gas shift. Gold Bull. 2009, 42, 337–342.CrossRefGoogle Scholar
  11. [11]
    Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem., Int. Ed. 2006, 45, 7896–7936.CrossRefGoogle Scholar
  12. [12]
    Green, I. X.; Tang, W.; Neurock, M.; Yates J. T. Spectroscopic observation of dual catalytic sites during oxidation of COon a Au/TiO2 catalyst. Science 2011, 333, 736–739.CrossRefGoogle Scholar
  13. [13]
    Widmann, D.; Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for COoxidation on oxide supported Au catalysts. Acc. Chem. Res. 2014, 47, 740–749.CrossRefGoogle Scholar
  14. [14]
    Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites. Acc. Chem. Res. 2013, 47, 805–815.CrossRefGoogle Scholar
  15. [15]
    Wang, Y.-G.; Mei, D.; Glezakou, V.-A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.CrossRefGoogle Scholar
  16. [16]
    Wang, Y.-G.; Mei, D. H.; Li, J.; Rousseau, R. DFT+U study on the localized electronic states and their potential role during H2O dissociation and COoxidation processes on CeO2(111) surface. J. Phys. Chem. C 2013, 117, 23082–23089.CrossRefGoogle Scholar
  17. [17]
    Liu, L. M.; McAllister, B.; Ye, H. Q.; Hu, P. Identifying an O2 supply pathway in COoxidation on Au/TiO2(110): A density functional theory study on the intrinsic role of water. J. Am. Chem. Soc. 2006, 128, 4017–4022.CrossRefGoogle Scholar
  18. [18]
    Chen, M. S.; Cai, Y.; Yan, Z.; Goodman, D. W. On the origin of the unique properties of supported Au nanoparticles. J. Am. Chem. Soc. 2006, 128, 6341–6346.CrossRefGoogle Scholar
  19. [19]
    Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.CrossRefGoogle Scholar
  20. [20]
    Wörz, A. S.; Heiz, U.; Cinquini, F.; Pacchioni, G. Charging of Au atoms on TiO2 thin films from COvibrational spectroscopy and DFT calculations. J. Phys. Chem. B 2005, 109, 18418–18426.CrossRefGoogle Scholar
  21. [21]
    Madsen, G. K. H.; Hammer, B. Effect of subsurface Tiinterstitials on the bonding of small gold clusters on rutile TiO2(110). J. Chem. Phys. 2009, 130, 044704.CrossRefGoogle Scholar
  22. [22]
    Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J.-M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of COon Au8 clusters on MgO. Science 2005, 307, 403–407.CrossRefGoogle Scholar
  23. [23]
    Fu, L.; Wu, N. Q.; Yang, J. H.; Qu, F.; Johnson, D. L.; Kung, M. C.; Kung, H. H.; Dravid, V. P. Direct evidence of oxidized gold on supported gold catalysts. J. Phys. Chem. B 2005, 109, 3704–3706.CrossRefGoogle Scholar
  24. [24]
    Bond, G. C.; Thompson, D. T. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33, 41–50.CrossRefGoogle Scholar
  25. [25]
    Wang, J. G.; Hammer, B. Role of Au+ in supporting and activating Au7 on TiO2(110). Phys. Rev. Lett. 2006, 97, 136107.CrossRefGoogle Scholar
  26. [26]
    Liu, Z. P.; Jenkins, S. J.; King, D. A. Origin and activity of oxidized gold in water-gas-shift catalysis. Phys. Rev. Lett. 2005, 94, 196102.CrossRefGoogle Scholar
  27. [27]
    Zhang, C. J.; Michaelides, A.; King, D. A.; Jenkins, S. J. Positive charge states and possible polymorphism of gold nanoclusters on reduced ceria. J. Am. Chem. Soc. 2010, 132, 2175–2182.CrossRefGoogle Scholar
  28. [28]
    Wang, Y.-G.; Yoon, Y.; Glezakou, V.-A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of COoxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.CrossRefGoogle Scholar
  29. [29]
    Cox, D. M.; Brickman, R.; Creegan, K.; Kaldor, A. Gold clusters: Reactions and deuterium uptake. Z. Phys. D-Atoms, Molecules and Clusters 1991, 19, 353–355.CrossRefGoogle Scholar
  30. [30]
    Lee, T. H.; Ervin, K. M. Reactions of copper group cluster anions with oxygen and carbon monoxide. J. Phys. Chem. 1994, 98, 10023–10031.CrossRefGoogle Scholar
  31. [31]
    Salisbury, B. E.; Wallace, W. T.; Whetten, R. L. Lowtemperature activation of molecular oxygen by gold clusters: A stoichiometric process correlated to electron affinity. Chem. Phys. 2000, 262, 131–141.CrossRefGoogle Scholar
  32. [32]
    Ding, X. L.; Li, Z. Y.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys. 2004, 120, 9594–9600.CrossRefGoogle Scholar
  33. [33]
    Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley, R. E. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys. 1992, 96, 3319–3329.CrossRefGoogle Scholar
  34. [34]
    Woodham, A. P.; Meijer, G.; Fielicke, A. Activation of molecular oxygen by anionic gold clusters. Angew. Chem., Int. Ed. 2012, 51, 4444–4447.CrossRefGoogle Scholar
  35. [35]
    Huang, W.; Zhai, H.-J.; Wang, L.-S. Probing the interactions of O2 with small gold cluster anions (Aun -, n = 1-7): Chemisorption vs. physisorption. J. Am. Chem. Soc. 2010, 132, 4344–4351.CrossRefGoogle Scholar
  36. [36]
    Pal, R.; Wang, L.-M.; Pei, Y.; Wang, L.-S.; Zeng, X. C. Unraveling the mechanisms of O2 activation by sizeselected gold clusters: Transition from superoxo to peroxo chemisorption. J. Am. Chem. Soc. 2012, 134, 9438–9445.CrossRefGoogle Scholar
  37. [37]
    Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A. et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxidesupported gold. J. Catal. 2006, 242, 71–81.CrossRefGoogle Scholar
  38. [38]
    Guzman, J.; Gates, B. C. Oxidation states of gold in MgOsupported complexes and clusters: Characterization by X-ray absorption spectroscopy and temperature-programmed oxidation and reduction. J. Phys. Chem. B 2003, 107, 2242–2248.CrossRefGoogle Scholar
  39. [39]
    Guzman, J.; Gates, B. C. Catalysis by supported gold: Correlation between catalytic activity for COoxidation and oxidation states of gold. J. Am. Chem. Soc. 2004, 126, 2672–2673.CrossRefGoogle Scholar
  40. [40]
    Yoon, B.; Hä kkinen, H.; Landman, U. Interaction of O2 with gold clusters: Molecular and dissociative adsorption. J. Phys. Chem. A 2003, 107, 4066–4071.CrossRefGoogle Scholar
  41. [41]
    Woodham, A. P.; Fielicke, A. Superoxide formation on isolated cationic gold clusters. Angew. Chem., Int. Ed. 2014, 53, 6554–6557.CrossRefGoogle Scholar
  42. [42]
    Zhao, Y.; Khetrapal, N. S.; Li, H.; Gao, Y.; Zeng, X. C. Interaction between O2 and neutral/charged Aun (n = 1–3) clusters: A comparative study between density-functional theory and coupled cluster calculations. Chem. Phys. Lett. 2014, 592, 127–131.CrossRefGoogle Scholar
  43. [43]
    Woodham, A. P.; Meijer, G.; Fielicke, A. Charge separation promoted activation of molecular oxygen by neutral gold clusters. J. Am. Chem. Soc. 2013, 135, 1727–1730.CrossRefGoogle Scholar
  44. [44]
    Wang, Y.; Gong, X. G. First-principles study of interaction of cluster Au32 with CO,H2, and O2. J. Chem. Phys. 2006, 125, 124703.CrossRefGoogle Scholar
  45. [45]
    Barrio, L.; Liu, P.; Rodriguez, J. A.; Campos-Martin, J. M.; Fierro, J. L. G. Effects of hydrogen on the reactivity of O2 toward gold nanoparticles and surfaces. J. Phys. Chem. C 2007, 111, 19001–19008.CrossRefGoogle Scholar
  46. [46]
    Roldán, A.; Gonzá lez, S.; Ricart, J. M.; Illas, F. Critical size for O2 dissociation by Au nanoparticles. ChemPhysChem 2009, 10, 348–351.CrossRefGoogle Scholar
  47. [47]
    Roldán, A.; Ricart, J. M.; Illas, F.; Pacchioni, G. O2 adsorption and dissociation on neutral, positively and negatively charged Aun (n = 5–79) clusters. Phys. Chem. Chem. Phys. 2010, 12, 10723–10729.CrossRefGoogle Scholar
  48. [48]
    Lyalin, A.; Taketsugu, T. Reactant-promoted oxygen dissociation on gold clusters. J. Phys. Chem. Lett. 2010, 1, 1752–1757.CrossRefGoogle Scholar
  49. [49]
    Gao, Y.; Zeng, X. C. Water-promoted O2 dissociation on small-sized anionic gold clusters. ACS Catal. 2012, 2, 2614–2621.CrossRefGoogle Scholar
  50. [50]
    Liu, C. Y.; Tan, Y. Z.; Lin, S. S.; Li, H.; Wu, X. J.; Li, L.; Pei, Y.; Zeng, X. C. CO self-promoting oxidation on nanosized gold clusters: Triangular Au3 active site and COinduced O–O scission. J. Am. Chem. Soc. 2013, 135, 2583–2595.CrossRefGoogle Scholar
  51. [51]
    Deng, X. Y.; Min, B. K.; Guloy, A.; Friend, C. M. Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: Implications for oxidation catalysis. J. Am. Chem. Soc. 2005, 127, 9267–9270.CrossRefGoogle Scholar
  52. [52]
    Chang, C.-R.; Wang, Y.-G.; Li, J. Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. Nano Res. 2011, 4, 131–142.CrossRefGoogle Scholar
  53. [53]
    Chang, C.-R.; Yang, X.-F.; Long, B.; Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: Understanding the catalytic behavior of bulk gold. ACS Catal. 2013, 3, 1693–1699.CrossRefGoogle Scholar
  54. [54]
    Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.CrossRefGoogle Scholar
  55. [55]
    Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.CrossRefGoogle Scholar
  56. [56]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  57. [57]
    Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuβ, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441.CrossRefGoogle Scholar
  58. [58]
    Jiang, D.-E.; Walter, M. Au40: A large tetrahedral magic cluster. Phys. Rev. B 2011, 84, 193402.CrossRefGoogle Scholar
  59. [59]
    Zhu, B. E.; Thrimurthulu, G.; Delannoy, L.; Louis, C.; Mottet, C.; Creuze, J.; Legrand, B.; Guesmi, H. Evidence of Pd segregation and stabilization at edges of AuPd nanoclusters in the presence of CO: A combined DFT and DRIFTS study. J. Catal. 2013, 308, 272–281.CrossRefGoogle Scholar
  60. [60]
    Paz-Borbón, L. O.; Johnston, R. L.; Barcaro, G.; Fortunelli, A. Structural motifs, mixing, and segregation effects in 38-atom binary clusters. J. Chem. Phys. 2008, 128, 134517.CrossRefGoogle Scholar
  61. [61]
    Pittaway, F.; Paz-Borbó n, L. O.; Johnston, R. L.; Arslan, H.; Ferrando, R.; Mottet, C.; Barcaro, G.; Fortunelli, A. Theoretical studies of palladium-gold nanoclusters: Pd-Au clusters with up to 50 atoms. J. Phys. Chem. C 2009, 113, 9141–9152.CrossRefGoogle Scholar
  62. [62]
    Ismail, R.; Johnston, R. L. Investigation of the structures and chemical ordering of small Pd-Au clusters as a function of composition and potential parameterisation. Phys. Chem. Chem. Phys. 2010, 12, 8607–8619.CrossRefGoogle Scholar
  63. [63]
    West, P. S.; Johnston, R. L.; Barcaro, G.; Fortunelli, A. The effect of CO and H chemisorption on the chemical ordering of bimetallic clusters. J. Phys. Chem. C 2010, 114, 19678–19686.CrossRefGoogle Scholar
  64. [64]
    Roldán, A.; Manel Ricart, J.; Illas, F. Influence of the exchange-correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theor. Chem. Acc. 2009, 123, 119–126.CrossRefGoogle Scholar
  65. [65]
    Baker, J. An algorithm for the location of transition states. J. Comput. Chem. 1986, 7, 385–395.CrossRefGoogle Scholar
  66. [66]
    Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.CrossRefGoogle Scholar
  67. [67]
    Sahoo, B.; Nayak, N. C.; Samantaray, A.; Pujapanda, P. K. Inorganic Chemsitry; PHI Learning: New Delhi, 2012.Google Scholar
  68. [68]
    Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.CrossRefGoogle Scholar
  69. [69]
    Daté, M.; Haruta, M. Moisture effect on COoxidation over Au/TiO2 catalyst. J. Catal. 2001, 201, 221–224.CrossRefGoogle Scholar
  70. [70]
    Huang, J. H.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem., Int. Ed. 2009, 48, 7862–7866.CrossRefGoogle Scholar
  71. [71]
    Lee, S.; Molina, L. M.; Ló pez, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J. et al. Selective propene epoxidation on immobilized Au6–10 clusters: The effect of hydrogen and water on activity and selectivity. Angew. Chem., Int. Ed. 2009, 48, 1467–1471.CrossRefGoogle Scholar
  72. [72]
    Ojeda, M.; Iglesia, E. Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2. Chem. Commun. 2009, 352–354.Google Scholar
  73. [73]
    Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J. S.; Troe, J.; Abel, B. Water catalysis of a radical-molecule gas-phase reaction. Science 2007, 315, 497–501.CrossRefGoogle Scholar
  74. [74]
    Long, B.; Tan, X.-F.; Ren, D.-S.; Zhang, W.-J. Theoretical studies on energetics and mechanisms of the decomposition of CF3OH. Chem. Phys. Lett. 2010, 492, 214–219.CrossRefGoogle Scholar
  75. [75]
    Long, B.; Zhang, W.-J.; Tan, X.-F.; Long, Z.-W.; Wang, Y.-B.; Ren, D.-S. Theoretical study on the gas phase reaction of sulfuric acid with hydroxyl radical in the presence of water. J. Phys. Chem. A 2011, 115, 1350–1357.CrossRefGoogle Scholar
  76. [76]
    Long, B.; Chang, C. R.; Long, Z. W.; Wang, Y. B.; Tan, X. F.; Zhang, W. J. Nitric acid catalyzed hydrolysis of SO3 in the formation of sulfuric acid: A theoretical study. Chem. Phys. Lett. 2013, 581, 26–29.CrossRefGoogle Scholar
  77. [77]
    Long, B.; Tan, X.-F.; Chang, C.-R.; Zhao, W.-X.; Long, Z.-W.; Ren, D.-S.; Zhang, W.-J. Theoretical studies on gas-phase reactions of sulfuric acid catalyzed hydrolysis of formaldehyde and formaldehyde with sulfuric acid and H2SO4···H2O complex. J. Phys. Chem. A 2013, 117, 5106–5116.CrossRefGoogle Scholar
  78. [78]
    Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold-titania interface in catalytic COoxidation. Science 2014, 345, 1599–1602.CrossRefGoogle Scholar
  79. [79]
    Shilov, A. E.; Shul' pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 1997, 97, 2879–2932.CrossRefGoogle Scholar
  80. [80]
    Zhou, M. F.; Zhao, Y. Y.; Gong, Y.; Li, J. Formation and characterization of the XeOO+ cation in solid argon. J. Am. Chem. Soc. 2006, 128, 2504–2505.CrossRefGoogle Scholar
  81. [81]
    Lopez, N.; Nørskov, J. K. Catalytic COoxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262–11263.CrossRefGoogle Scholar
  82. [82]
    Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Hä kkinen, H.; Barnett, R. N.; Landman, U. When gold is not noble: Nanoscale gold catalysts. J. Phys. Chem. A 1999, 103, 9573–9578.CrossRefGoogle Scholar
  83. [83]
    Liu, Z. P.; Gong, X. Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Catalytic role of metal oxides in gold-based catalysts: A first principles study of COoxidation on TiO2 supported Au. Phys. Rev. Lett. 2003, 91, 266102.CrossRefGoogle Scholar
  84. [84]
    Ide, M. S.; Davis, R. J. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc. Chem. Res. 2013, 47, 825–833.CrossRefGoogle Scholar
  85. [85]
    Mullen, G. M.; Gong, J. L.; Yan, T.; Pan, M.; Mullins, C. B. The effects of adsorbed water on gold catalysis and surface chemistry. Top. Catal. 2013, 56, 1499–1511.CrossRefGoogle Scholar
  86. [86]
    Zhang, W. H.; Huang, W. X.; Yang, J. L. Theoretical investigation of gold based model catalysts. Sci. China Chem. 2015, 58, 565–573.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of EducationTsinghua UniversityBeijingChina

Personalised recommendations