Nano Research

, Volume 8, Issue 11, pp 3694–3703 | Cite as

Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface

  • Lixing Kang
  • Yue Hu
  • Hua Zhong
  • Jia Si
  • Shuchen Zhang
  • Qiuchen Zhao
  • Jingjing Lin
  • Qingwen Li
  • Zhiyong Zhang
  • Lianmao Peng
  • Jin Zhang
Research Article

Abstract

A scalable approach to obtaining high-density, large-area single-walled carbon nanotube (SWNT) arrays is essential for realizing the full potential of SWNTs in practical electronic devices; this is still a great challenge. Here, we report an improved synthetic method for large-area growth of ultra-high-density SWNT arrays on sapphire surfaces by combining Trojan catalysts (released from the substrate, to assure ultra-high density) with Mo nanoparticles (loaded on the surface, to stabilize the released Trojan catalysts) as cooperating catalysts. Dense and perfectly aligned SWNTs covered the entire substrate and the local density was as high as 160 tubes/μm. Field-effect transistors (FETs) built on such arrays gave an output current density of −488 μA/μm at the drain-source voltage (Vds) = the gate-source voltage (Vgs) =–2 V, corresponding to an on-conductance per width of 244 μS/μm. These results confirm the wide range of potential applications of Trojan-Mo catalysts in the structure-controlled growth of SWNTs.

Keywords

single-walled carbon nanotube arrays ultra-high density large area cooperating catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_869_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1130 KB.

References

  1. [1]
    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.CrossRefGoogle Scholar
  2. [2]
    Che, Y. C.; Chen, H. T.; Gui, H.; Liu, J.; Liu, B. L.; Zhou, C. W. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond.Sci. Technol. 2014, 29, 073001.CrossRefGoogle Scholar
  3. [3]
    Kang, L. X.; Hu, Y.; Liu, L. L.; Wu, J. X.; Zhang, S. C.; Zhao, Q. C.; Ding, F.; Li, Q. W.; Zhang, J. Growth of closepacked semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett. 2015, 15, 403–409.CrossRefGoogle Scholar
  4. [4]
    Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S.-J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.CrossRefGoogle Scholar
  5. [5]
    Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443–444.CrossRefGoogle Scholar
  6. [6]
    Wang, C.; Ryu, K.; Arco, L.; Badmaev, A.; Zhang, J. L.; Lin, X.; Che, Y. C.; Zhou, C. W. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Res. 2010, 3, 831–842.CrossRefGoogle Scholar
  7. [7]
    Shulaker, M. M.; Wei, H.; Patil, N.; Provine, J.; Chen, H.-Y.; Wong, H. S. P.; Mitra, S. Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett. 2011, 11, 1881–1886.CrossRefGoogle Scholar
  8. [8]
    Cao, Q.; Han, S.-J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.CrossRefGoogle Scholar
  9. [9]
    Brady, G. J.; Joo, Y.; Wu, M.-Y.; Shea, M. J.; Gopalan, P.; Arnold, M. S. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 2014, 8, 11614–11621.CrossRefGoogle Scholar
  10. [10]
    Cao, Q.; Han, S.-J.; Tulevski, G. S. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat. Commun. 2014, 5, 5071.CrossRefGoogle Scholar
  11. [11]
    Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, J.; Kim, K.; Wang, H. L.; Sinclair, R.; Wong, H. S. P.; Bao, Z. Largearea assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors. Adv. Mater. 2015, 27, 2656–2662.CrossRefGoogle Scholar
  12. [12]
    Wang, Y. L.; Pillai, S. K. R.; Chan-Park, M. B. Highperformance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique. Small 2013, 9, 2960–2969.CrossRefGoogle Scholar
  13. [13]
    Chen, Y. B.; Zhang, J. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc. Chem. Res. 2014, 47, 2273–2281.CrossRefGoogle Scholar
  14. [14]
    Feng, C. Q.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Nanobarrierterminated growth of single-walled carbon nanotubes on quartz surfaces. Nano Res. 2009, 2, 768–773.Google Scholar
  15. [15]
    Chen, Y. B.; Zhang, Y. Y.; Hu, Y.; Kang, L. X.; Zhang, S. C.; Xie, H. H.; Liu, D.; Zhao, Q. C.; Li, Q. W.; Zhang, J. State of the art of single-walled carbon nanotube synthesis on surfaces. Adv. Mater. 2014, 26, 5898–5922.CrossRefGoogle Scholar
  16. [16]
    Zhou, W. W.; Rutherglen, C.; Burke, P. J. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.CrossRefGoogle Scholar
  17. [17]
    Zhang, Y. Y.; Zhang, Y.; Xian, X. J.; Zhang, J.; Liu, Z. F. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 2008, 112, 3849–3856.CrossRefGoogle Scholar
  18. [18]
    Ding, L.; Zhou, W. W.; McNicholas, T. P.; Wang, J. Y.; Chu, H. B.; Li, Y.; Liu, J. Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res. 2009, 2, 903–910.CrossRefGoogle Scholar
  19. [19]
    Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 2010, 22, 1508–1515.CrossRefGoogle Scholar
  20. [20]
    Zhou, W. W.; Ding, L.; Liu, J. Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. 2009, 2, 593–598.CrossRefGoogle Scholar
  21. [21]
    He, M. S.; Duan, X. J.; Wang, X.; Zhang, J.; Liu, Z. F.; Robinson, C. Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. J. Phys. Chem. B 2004, 108, 12665–12668.CrossRefGoogle Scholar
  22. [22]
    Chen, Y. B.; Zhang, J. Diameter controlled growth of singlewalled carbon nanotubes from SiO2 nanoparticles. Carbon 2011, 49, 3316–3324.CrossRefGoogle Scholar
  23. [23]
    Hong, S. W.; Banks, T.; Rogers, J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 2010, 22, 1826–1830.CrossRefGoogle Scholar
  24. [24]
    Wu, B.; Geng, D. C.; Guo, Y. L.; Huang, L. P.; Chen, J. Y.; Xue, Y. Z.; Yu, G.; Liu, Y. Q.; Kajiura, H.; Li, Y. M. Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Res. 2011, 4, 931–937.CrossRefGoogle Scholar
  25. [25]
    Zhou, W. W.; Ding, L.; Yang, S.; Liu, J. Synthesis of highdensity, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 2011, 5, 3849–3857.CrossRefGoogle Scholar
  26. [26]
    Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.Google Scholar
  27. [27]
    Hong, G.; Chen, Y. B.; Li, P.; Zhang, J. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts. Carbon 2012, 50, 2067–2082.CrossRefGoogle Scholar
  28. [28]
    Ago, H.; Uehara, N.; Ikeda, K.-I.; Ohdo, R.; Nakamura, K.; Tsuji, M. Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chem. Phys. Lett. 2006, 421, 399–403.CrossRefGoogle Scholar
  29. [29]
    An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.CrossRefGoogle Scholar
  30. [30]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  31. [31]
    Youn, S. K.; Park, H. G. Morphological evolution of Fe–Mo bimetallic catalysts for diameter and density modulation of vertically aligned carbon nanotubes. J. Phys. Chem. C 2013, 117, 18657–18665.CrossRefGoogle Scholar
  32. [32]
    Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.CrossRefGoogle Scholar
  33. [33]
    Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.CrossRefGoogle Scholar
  34. [34]
    Homma, Y.; Suzuki, S.; Kobayashi, Y.; Nagase, M.; Takagi, D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Appl. Phys. Lett. 2004, 84, 1750–1752.CrossRefGoogle Scholar
  35. [35]
    Petit, P.; Salem, D.; He, M. S.; Paillet, M.; Parret, R.; Sauvajol, J.-L.; Zahab, A. Study of the thermal stability of supported catalytic nanoparticles for the growth of singlewalled carbon nanotubes with narrow diameter distribution by chemical vapor deposition of methane. J. Phys. Chem. C 2012, 116, 24123–24129.CrossRefGoogle Scholar
  36. [36]
    Lin, M.; Ying Tan, J. P.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y.-L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452.CrossRefGoogle Scholar
  37. [37]
    Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J.-Q.; Xu, Z.; Peng, F. et al. Chiralityspecific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.Google Scholar
  38. [38]
    He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metalfilm- assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981–989.Google Scholar
  39. [39]
    Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.CrossRefGoogle Scholar
  40. [40]
    Fu, Q.; Wagner, T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf.Sci. Rep. 2007, 62, 431–498.CrossRefGoogle Scholar
  41. [41]
    Campbell, C. T. Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf.Sci. Rep. 1997, 27, 1–111.CrossRefGoogle Scholar
  42. [42]
    Zhao, M.-Q.; Zhang, Q.; Zhang, W.; Huang, J.-Q.; Zhang, Y. H.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739–14741.CrossRefGoogle Scholar
  43. [43]
    Amama, P. B.; Pint, C. L.; Kim, S. M.; McJilton, L.; Eyink, K. G.; Stach, E. A.; Hauge, R. H.; Maruyama, B. Influence of alumina type on the evolution and activity of aluminasupported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 2010, 4, 895–904.CrossRefGoogle Scholar
  44. [44]
    Peng, L.-M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater.Today 2014, 17, 433–442.CrossRefGoogle Scholar
  45. [45]
    Ding, L.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Wang, S.; Xu, H. L.; Peng, F.; Li, Y.; Peng, L.-M. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. ACS Nano 2011, 5, 2512–2519.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lixing Kang
    • 1
    • 2
    • 3
  • Yue Hu
    • 2
  • Hua Zhong
    • 4
  • Jia Si
    • 4
  • Shuchen Zhang
    • 2
  • Qiuchen Zhao
    • 2
  • Jingjing Lin
    • 2
  • Qingwen Li
    • 1
  • Zhiyong Zhang
    • 4
  • Lianmao Peng
    • 4
  • Jin Zhang
    • 2
  1. 1.Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and NanobionicsChinese Academy of SciencesSuzhouChina
  2. 2.Center for Nanochemistry, Beijing Science and Engineering Technology Research Center for Low Dimensional Carbon Materials, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory for the Physics and Chemistry of Nanodevices, Department of ElectronicsPeking UniversityBeijingChina

Personalised recommendations