Advertisement

Nano Research

, Volume 8, Issue 11, pp 3630–3638 | Cite as

Growth control of peptide-nanotube spherulitic films: Experiments and simulations

  • Netta Hendler
  • Elad Mentovich
  • Bálint Korbuly
  • Tamás Pusztai
  • László GránásyEmail author
  • Shachar RichterEmail author
Research Article

Abstract

Multi-hierarchical self-assembly (MHSA) is a key process responsible for the spontaneous formation of many complex structures. However, because of the complexity of the process, the underlying mechanism remains largely unclear. Thus, a deeper understanding of MHSA is required, especially for the preparation of MHSA systems via bottom-up methodologies. We show here, experimentally and theoretically, that the complex-formation MHSA of peptide nanotube films can be controlled solely by manipulating the experimental parameter of humidity. Furthermore, we identify growth-front nucleation (GFN; the formation of new grains at the perimeter) as the physical background for the observed morphological transitions by correlating experimental observations with phase-field modeling of the morphological evolution. Our findings indicate a simple way to control multi-hierarchical morphologies, crucial for the employment of bottom-up techniques in constructing complex structures for practical applications.

Keywords

multi-hierarchical self-assembly growth-front nucleation peptide nanotubes spherulite crystallization experiment vs. phase-field modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_863_MOESM1_ESM.pdf (2.2 mb)
Supplementary material, approximately 2210 KB.

References

  1. [1]
    Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and nonequilibrium conditions. Nat. Mater. 2009, 8, 781–792.CrossRefGoogle Scholar
  2. [2]
    O’Leary, L. E. R.; Fallas, J. A.; Bakota, E. L.; Kang, M. K.; Hartgerink, J. D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011, 3, 821–828.CrossRefGoogle Scholar
  3. [3]
    Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.CrossRefGoogle Scholar
  4. [4]
    Schlittler, R. R.; Seol, J. W.; Gimzewski, J. K.; Durkan, C.; Saifullah, M. S. M.; Welland, M. E. Single crystals of single-walled carbon nanotubes formed by self-assembly. Science 2001, 292, 1136–1139.CrossRefGoogle Scholar
  5. [5]
    Harada, A.; Kobayashi, R.; Takashima Y.; Hashidzume, A.; Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 2011, 3, 34–37.CrossRefGoogle Scholar
  6. [6]
    Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L.; Rosenman, G.; Gazit, E. Selfassembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 2009, 4, 849–854.CrossRefGoogle Scholar
  7. [7]
    Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.CrossRefGoogle Scholar
  8. [8]
    Hendler, N.; Sidelman, N.; Reches, M.; Gazit, E.; Rosenberg, Y.; Richter, S. Formation of well-organized self-assembled films from peptide nanotubes. Adv. Mater. 2007, 19, 1485–1488.CrossRefGoogle Scholar
  9. [9]
    Reches, M.; Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 2006, 1, 195–200.CrossRefGoogle Scholar
  10. [10]
    Sidelman, N.; Rosenberg, Y.; Richter, S. Peptide-based spherulitic films-formation and properties. J. Colloid Interface Sci. 2010, 343, 387–391.CrossRefGoogle Scholar
  11. [11]
    Magill, J. H. Review spherulites: A personal perspective. J. Mater. Sci. 2001, 36, 3143–3164.CrossRefGoogle Scholar
  12. [12]
    Ryschenkow, G.; Faivre, G. Bulk crystallization of liquid selenium Primary nucleation, growth kinetics and modes of crystallization. J. Cryst. Growth 1988, 87, 221–235.CrossRefGoogle Scholar
  13. [13]
    James, P. F. In Advances in Ceramics; Uhlman, D. R.; Beagle, G. H.; Simmons, J. H., Eds.; American Ceramic Society: Columbus, Ohio, 1982; Vol. 4, pp 1–48.Google Scholar
  14. [14]
    Köster, U.; Herold, U. Crystallization of metallic glasses. In Glassy Metals I; Güntherodt, J. H.; Beck, H., Eds.; Springer: Berlin, Heidelberg, 1981; Vol. 46, pp 225–259.CrossRefGoogle Scholar
  15. [15]
    Sperling, L. H. Introduction to Physical Polymer Science; Wiley: New York, 1992; Vol. 6.Google Scholar
  16. [16]
    Hutter, J. L.; Bechhoefer, J. Banded spherulitic growth in a liquid crystal. J. Cryst. Growth 2000, 217, 332–343.CrossRefGoogle Scholar
  17. [17]
    Keith, H. D.; Padden, F. J. Jr. A phenomenological theory of spherulitic crystallization. J. Appl. Phys. 1963, 34, 2409–2421.CrossRefGoogle Scholar
  18. [18]
    Walker, M. L.; Smith, A. P.; Karim, A., (unpublished).Google Scholar
  19. [19]
    Ojeda, J. R.; Martin, D. C. High-resolution microscopy of PMDA-ODA polyimide single crystals. Macromolecules 1993, 26, 6557–6565.CrossRefGoogle Scholar
  20. [20]
    Geil, P. H. Polymer Single Crystals; Wiley: New York, 1963.Google Scholar
  21. [21]
    Hosier, I. L.; Bassett, D. C.; Vaughan, A. S. Spherulitic growth and cellulation in dilute blends of monodisperse longn-alkanes. Macromolecules 2000, 33, 8781–8790.CrossRefGoogle Scholar
  22. [22]
    Khoury, F. The spherulitic crystallization of isotactic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded crystal precursors. J. Res. Natl. Bur. Stand., Sect. A 1996, 70A, 29–61.CrossRefGoogle Scholar
  23. [23]
    Gránásy, L.; Pusztai, T.; Börzsönyi, T.; Warren, J. A.; Douglas, J. F. A general mechanism of polycrystalline growth. Nat. Mater. 2004, 3, 645–650.CrossRefGoogle Scholar
  24. [24]
    Gránásy, L.; Pusztai, T.; Tegze, G.; Warren J. A.; Douglas, J. F. Growth and form of spherulites. Phys. Rev. E 2005, 72, 011605.CrossRefGoogle Scholar
  25. [25]
    Warren, J. A.; Boettinger, W. J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall. Mater. 1995, 43, 689–703.CrossRefGoogle Scholar
  26. [26]
    Gránásy, L.; Börzsönyi, T.; Pusztai, T. Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 2002, 88, 206105.CrossRefGoogle Scholar
  27. [27]
    Kobayashi, R.; Warren, J. A.; Carter, W. C. Vector-valued phase field model for crystallization and grain boundary formation. Physica D 1998, 119, 415–423.CrossRefGoogle Scholar
  28. [28]
    Gránásy, L.; Pusztai, T.; Borzsonyi, T.; Warren, J. A.; Kvamme, B.; James, P. F. Nucleation and polycrystalline solidification in binary phase field theory. Phys. Chem. Glasses 2004, 45, 107–115.Google Scholar
  29. [29]
    Hoyt, J. J.; Asta, M.; Karma, A. Atomistic and continuum modeling of dendritic solidification. Mat. Sci. Eng. R 2003, 41, 121–163.CrossRefGoogle Scholar
  30. [30]
    For specificity, we employ the well-studied, ideal solution phase diagram of the Ni-Cu alloy. This choice is not particularly restrictive, as it is formally equivalent to a pure material, where thermal diffusion replaces solute diffusion as the dominant transport mechanism. Moreover, the model is no way restricted to metals as our previous applications for polymers demonstrate. As in former studies, we fix the temperature to be 1,574 K. The orientation dependence of the molecular attachment kinetics is modelled by M φ = M φ,0{1 + δ0 ·cos[k(Ψ - θ)]}. The angle Ψ is the inclination of the liquid-solid interface in the laboratory frame and k is the symmetry index. The fibre-like crystallites forming in PNT matter imply a two-fold symmetry (k = 2) and a large kinetic anisotropy, which was chosen as δ0 = 0. 995. A similar approach is used to describe the anisotropy of the interfacial free energy: γ = γ0 {1 + s 0·cos[k(Ψ - θ)]}. Crystal growth is sensitive to both of these anisotropies; increasing either of them yields sharper needle crystal morphologies. Our computations were performed with supersaturations in the range 0.7 ≤ S = (c L - c)/(c L - c S) ≤ 1.2, where c L, c S and c are the concentrations at the liquidus, solidus, and the initial homogeneous liquid mixture, respectively.Google Scholar
  31. [31]
    Zhang, Z. J; Wei, B.; Ward, J. W.; Vajtai, R.; Ramanath, G.; Ajayan, P. M. Select pathways to carbon nanotube film growth. Adv. Mater. 2001, 13, 1767–1770.CrossRefGoogle Scholar
  32. [32]
    Kim, K. J.; Kim, K. M. Growth kinetics in seeded cooling crystallization of 3-nitro-1,2,4-triazol-5-one in water-Nmethylpyrrolidone. Powder Technol. 2002, 122, 46–53.CrossRefGoogle Scholar
  33. [33]
    Yip, Y.; McHugh, A. J. Modeling and simulation of nonsolvent vapor-induced phase separation. J. Membrane Sci. 2006, 271, 163–176.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Netta Hendler
    • 1
    • 2
  • Elad Mentovich
    • 1
    • 2
  • Bálint Korbuly
    • 3
  • Tamás Pusztai
    • 3
  • László Gránásy
    • 3
    • 4
    Email author
  • Shachar Richter
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringTel Aviv UniversityRamat Aviv, Tel AvivIsrael
  2. 2.Center for Nanoscience and NanotechnologyTel Aviv UniversityRamat Aviv, Tel AvivIsrael
  3. 3.Wigner Research Centre for PhysicsBudapestHungary
  4. 4.Brunel Centre for Advanced Solidification TechnologyBrunel UniversityUxbridge, MiddlesexUK

Personalised recommendations