Skip to main content
Log in

Room-temperature tracking of chiral recognition process at the single-molecule level

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The molecular-level identification of a chiral recognition process of phthalocyanine (Pc) was studied on a Cu(100) surface by scanning tunneling microscopy (STM). STM revealed that a chiral Pc molecule forms a series of metastable dimer configurations with other Pc molecules. Eventually, the Pc molecule recognizes another Pc molecule with the same chirality to form a stable dimer configuration. Homochiral dimers were found on the Cu surface, demonstrating the chiral specificity of Pc dimerization. The mechanism for this chiral recognition process is identified, disclosing the critical role of the particular adsorption geometry of the chiral dimers on the Cu surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 2, 201–341.

    Article  Google Scholar 

  2. Vijayaraghavan, A.; Hennrich, F.; Stü rzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M. et al. Toward single-chirality carbon nanotube device arrays. ACS Nano 2010, 2, 2748–2754.

    Article  Google Scholar 

  3. Speranza, M.; Rondino, F.; Satta, M.; Paladini, A.; Giardini, A.; Catone, D.; Piccirillo, S. Molecular and supramolecular chirality: R2PI spectroscopy as a tool for the gas-phase recognition of chiral systems of biological interest. Chirality 2009, 2, 119–144.

    Article  Google Scholar 

  4. Tahara, K.; Yamaga, H.; Ghijsens, E.; Inukai, K.; Adisoejoso, J.; Blunt, M. O.; De Feyter, S.; Tobe, Y. Control and induction of surface-confined homochiral porous molecular networks. Nat. Chem. 2011, 2, 714–719.

    Article  Google Scholar 

  5. Raval, R. Chiral expression from molecular assemblies at metal surfaces: Insights from surface science techniques. Chem. Soc. Rev. 2009, 2, 707–721.

    Article  Google Scholar 

  6. Ernst, K.-H. Supramolecular surface chirality. In Topics in Current Chemistry: Supramolecular Chirality; Springer Berlin: Heidelberg, 2006; pp 209–252.

    Chapter  Google Scholar 

  7. Lingenfelder, M.; Tomba, G.; Costantini, G.; Ciacchi, L. C.; De Vita, A.; Kern, K. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew. Chem., Int. Ed. 2007, 2, 4492–4495.

    Article  Google Scholar 

  8. Mugarza, A.; Lorente, N.; Ordejón, P.; Krull, C.; Stepanow, S.; Bocquet, M.-L.; Fraxedas, J.; Ceballos, G.; Gambardella, P. Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking. Phys. Rev. Lett. 2010, 105, 115702.

    Article  Google Scholar 

  9. Chen, F.; Chen, X.; Liu, L. C.; Song, X.; Liu, S. Y.; Liu, J.; Ouyang, H. P.; Cai, Y. X.; Liu, X. Q.; Pan, H. B.; et al. Chiral recognition of zinc phthalocyanine on Cu(100) surface. Appl. Phys. Lett. 2012, 100, 081602.

    Article  Google Scholar 

  10. Fischer, E. Einfluss der configuration auf die wirkung der enzyme. Ber. Dtsch. Chem. Ges. 1894, 2, 2985–2993.

    Article  Google Scholar 

  11. Easson, L. H.; Stedman, E. Studies on the relationship between chemical constitution and physiological action: Molecular dissymmetry and physiological activity. Biochem. J. 1933, 2, 1257–1266.

    Article  Google Scholar 

  12. Kresse, G.; Furthmü ller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 2, 15–50.

    Article  Google Scholar 

  13. Kresse, G.; Furthmü ller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 2, 11169–11186.

    Article  Google Scholar 

  14. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 2, 1758–1775.

    Article  Google Scholar 

  15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 2, 3865–3868.

    Article  Google Scholar 

  16. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

    Article  Google Scholar 

  17. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 2, 1787–1799.

    Article  Google Scholar 

  18. Bucko, T.; Hafner, J.; Lebègue, S.; Ángyán, J. G. Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 2010, 2, 11814–11824.

    Article  Google Scholar 

  19. Amsalem, P.; Giovanelli, L.; Themlin J. M.; Angot, T. Electronic and vibrational properties at the ZnPc/Ag(110) interface. Phys. Rev. B 2009, 79, 235426.

    Article  Google Scholar 

  20. Kitamura, S.; Sato, T.; Iwatsuki, M. Observation of surface reconstruction on silicon above 800 °C using the STM. Nature 1991, 2, 215–217.

    Article  Google Scholar 

  21. Nakakura, C. Y.; Phanse, V. M.; Zheng, G.; Bannon, G.; Altman, E. I.; Lee, K. P. A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope. Rev. Sci. Instrum. 1998, 2, 3251–3258.

    Article  Google Scholar 

  22. Buchner, F.; Xiao, J.; Zillner, E.; Chen, M.; Rö ckert, M.; Ditze, S.; Stark, M.; Steinrü ck, H.-P.; Gottfried, J. M.; Marbach, H. Diffusion, rotation, and surface chemical bond of individual 2H-tetraphenylporphyrin molecules on Cu(111). J. Phys. Chem. C 2011, 2, 24172–24177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingdong Dong or Li Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Liu, J., Chen, F. et al. Room-temperature tracking of chiral recognition process at the single-molecule level. Nano Res. 8, 3505–3511 (2015). https://doi.org/10.1007/s12274-015-0850-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0850-7

Keywords

Navigation