Skip to main content
Log in

Hierarchical mechanical behavior of cobalt supracrystals related to nanocrystallinity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Here, we report on hierarchical mechanical behavior of 500-nm-thick Co-nanocrystal 3D superlattices (supracrystals) induced by either the crystalline structure (nanocrystallinity) or the length of the coating agent of Co nanocrystals. Increasing the nanocrystal shape anisotropy of Co nanocrystals through the control of their nanocrystallinities induces a higher level of ordering with both translational and orientational alignment of nanocrystals within the supracrystals. The hierarchy in ordering at various scales, i.e., from the atomic lattice within the nanocrystals to the nanocrystal superlattices within supracrystals, is correlated with marked changes in the Young’s modulus of supracrystals: From 0.7 ± 0.4 to 1.7 ± 0.5 and to 6.6 ± 1.5 GPa as the crystalline structure of Co nanoparticles changes from amorphous-Co to ε-Co and to hexagonal compact packing (hcp)-Co, respectively. Moreover, for supracrystals of 7 nm amorphous Co nanoparticles, the Young’s modulus decreases by one order of magnitude from 0.7 ± 0.4 to 0.08 ± 0.03 GPa upon reducing the alkyl chain length of the ligands coating the Co nanoparticles from C18 (oleic acid) to C12 (lauric acid). The hierarchical mechanical behavior is rationalized using a dimensional model of the stress-strain relationship in supracrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, Y.; Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 2007, 6, 754–759.

    Article  Google Scholar 

  2. Goubet, N.; Portalès, H.; Yan, C.; Arfaoui, I.; Albouy, P.-A.; Mermet, A.; Pileni, M.-P. Simultaneous growths of gold colloidal crystals. J. Am. Chem. Soc. 2012, 134, 3714–3719.

    Article  Google Scholar 

  3. Goubet, N.; Yan, C.; Polli, D.; Portalès, H.; Arfaoui, I.; Cerullo, G.; Pileni, M.-P. Modulating physical properties of isolated and self-assembled nanocrystals through change in nanocrystallinity. Nano Lett. 2013, 13, 504–508.

    Article  Google Scholar 

  4. Major, T. A.; Lo, S. S.; Yu, K.; Hartland, G. V. Timeresolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects. J. Phys. Chem. Lett. 2014, 5, 866–874.

    Article  Google Scholar 

  5. Petrova, H.; Perez-Juste, J.; Zhang, Z. Y.; Zhang, J.; Kosel, T.; Hartland, G. V. Crystal structure dependence of the elastic constants of gold nanorods. J. Mater. Chem. 2006, 16, 3957–3963.

    Article  Google Scholar 

  6. Portalès, H.; Goubet, N.; Sirotkin, S.; Duval, E.; Mermet, A.; Albouy, P.-A.; Pileni, M.-P. Crystallinity segregation upon selective self-assembling of gold colloidal single nanocrystals. Nano Lett. 2012, 12, 5292–5298.

    Article  Google Scholar 

  7. Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358–3371.

    Article  Google Scholar 

  8. Yang, Z. J.; Lisiecki, I.; Walls, M.; Pileni, M.-P. Nanocrystallinity and the ordering of nanoparticles in two-dimensional superlattices: Controlled formation of either core/shell (Co/CoO) or hollow CoO nanocrystals. ACS Nano 2013, 7, 1342–1350.

    Article  Google Scholar 

  9. Lisiecki, I.; Salzemann, C.; Parker, D.; Albouy, P.-A.; Pileni, M.-P. Emergence of new collective properties of cobalt nanocrystals ordered in fcc supracrystals: I, Structural investigation. J. Phys. Chem. C 2007, 111, 12625–12631.

    Article  Google Scholar 

  10. Yan, C.; Portalès, H.; Goubet, N.; Arfaoui, I.; Sirotkin, S.; Mermet, A.; Pileni, M.-P. Assessing the relevance of building block crystallinity for tuning the stiffness of gold nanocrystal superlattices. Nanoscale 2013, 5, 9523–9527.

    Article  Google Scholar 

  11. Podsiadlo, P.; Krylova, G.; Lee, B.; Critchley, K.; Gosztola, D. J.; Talapin, D. V.; Ashby, P. D.; Shevchenko, E. V. The role of order, nanocrystal size, and capping ligands in the collective mechanical response of three-dimensional nanocrystal solids. J. Am. Chem. Soc. 2010, 132, 8953–8960.

    Article  Google Scholar 

  12. Tam, E.; Podsiadlo, P.; Shevchenko, E.; Ogletree, D. F.; Delplancke-Ogletree, M.-P.; Ashby, P. D. Mechanical properties of face-centered cubic supercrystals of nanocrystals. Nano Lett. 2010, 10, 2363–2367.

    Article  Google Scholar 

  13. Yan, C.; Arfaoui, I.; Goubet, N.; Pileni, M.-P. Soft supracrystals of Au nanocrystals with tunable mechanical properties. Adv. Funct. Mater. 2013, 23, 2315–2321.

    Article  Google Scholar 

  14. Gauvin, M.; Wan, Y. F.; Arfaoui, I.; Pileni, M.-P. Mechanical properties of Au supracrystals tuned by flexible ligand interactions. J. Phys. Chem. C 2014, 118, 5005–5012.

    Article  Google Scholar 

  15. Sun, S. H.; Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J. Appl. Phys. 1999, 85, 4325–4330.

    Article  Google Scholar 

  16. Gauvin, M.; Yang, N.; Barthel, E.; Arfaoui, I.; Yang, J.; Albouy, P. A.; Pileni, M. P. Morphology, nanocrystallinity, and elastic properties of single domain ε-Co supracrystals. J. Phys. Chem. C 2015, 119, 7483–7490.

    Article  Google Scholar 

  17. Lisiecki, I.; Pileni, M. P. Synthesis of well-defined and low size distribution cobalt nanocrystals: The limited influence of reverse micelles. Langmuir 2003, 19, 9486–9489.

    Article  Google Scholar 

  18. Cavalier, M.; Walls, M.; Lisiecki, I.; Pileni, M.-P. How can the nanocrystallinity of 7 nm spherical Co nanoparticles dispersed in solution be improved? Langmuir 2011, 27, 5014–5020.

    Article  Google Scholar 

  19. Yang, Z. J.; Cavalier, M.; Walls, M.; Bonville, P.; Lisiecki, I.; Pileni, M.-P. A phase-solution annealing strategy to control the cobalt nanocrystal anisotropy: Structural and magnetic investigations. J. Phys. Chem. C 2012, 116, 15723–15730.

    Article  Google Scholar 

  20. Dinega, D. P.; Bawendi, M. G. A solution-phase chemical approach to a new crystal structure of cobalt. Angew. Chem., Int. Ed. 1999, 38, 1788–1791.

    Article  Google Scholar 

  21. Yang, J. H.; Khazen, K.; Pileni, M.-P. How nanocrystallinity and order define the magnetic properties of ε-Co supracrystals. J. Phys.-Condens. Matter 2014, 26, 295303.

    Article  Google Scholar 

  22. Li, R. P.; Bian, K. F.; Hanrath, T.; Bassett, W. A.; Wang, Z. W. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces. J. Am. Chem. Soc. 2014, 136, 12047–12055.

    Article  Google Scholar 

  23. Wang, Z. W.; Schliehe, C.; Bian, K. F.; Dale, D.; Bassett, W. A.; Hanrath, T.; Klinke, C.; Weller, H. Correlating superlattice polymorphs to internanoparticle distance, packing density, and surface lattice in assemblies of PbS nanoparticles. Nano Lett. 2013, 13, 1303–1311.

    Article  Google Scholar 

  24. Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2011, 11, 131–137.

    Article  Google Scholar 

  25. Brown, L. O.; Hutchison, J. E. Formation and electron diffraction studies of ordered 2-D and 3-D superlattices of amine-stabilized gold nanocrystals. J. Phys. Chem. B 2001, 105, 8911–8916.

    Article  Google Scholar 

  26. Quan, Z. W.; Fang, J. Y. Superlattices with non-spherical building blocks. Nano Today 2010, 5, 390–411.

    Article  Google Scholar 

  27. Saha, R.; Nix, W. D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002, 50, 23–38.

    Article  Google Scholar 

  28. Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. Prog. Surf. Sci. 1994, 45, 131–143.

    Article  Google Scholar 

  29. Pharr, G. M.; Oliver, W. C.; Brotzen, F. R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 1992, 7, 613–617.

    Article  Google Scholar 

  30. Oliver, W. C.; Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20.

    Article  Google Scholar 

  31. Wu, H. M.; Wang, Z. W.; Fan, H. Y. Stress-induced nanoparticle crystallization. J. Am. Chem. Soc. 2014, 136, 7634–7636.

    Article  Google Scholar 

  32. Bian, K. F.; Wang, Z. W.; Hanrath, T. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes. J. Am. Chem. Soc. 2012, 134, 10787–10790.

    Article  Google Scholar 

  33. Wang, Z. W.; Schliehe, C.; Wang, T.; Nagaoka, Y.; Cao, Y. C.; Bassett, W. A.; Wu, H. M.; Fan, H. Y.; Weller, H. Deviatoric stress driven formation of large single-crystal PbS nanosheet from nanoparticles and in situ monitoring of oriented attachment. J. Am. Chem. Soc. 2011, 133, 14484–14487.

    Article  Google Scholar 

  34. Ku, J. Y.; Aruguete, D. M.; Alivisatos, A. P.; Geissler, P. L. Self-assembly of magnetic nanoparticles in evaporating solution. J. Am. Chem. Soc. 2011, 133, 838–848.

    Article  Google Scholar 

  35. Widmer-Cooper, A.; Geissler, P. Orientational ordering of passivating ligands on CdS nanorods in solution generates strong rod–rod interactions. Nano Lett. 2014, 14, 57–65.

    Article  Google Scholar 

  36. Vella, D.; du Pontavice, E.; Hall, C. L.; Goriely, A. The magneto-elastica: From self-buckling to self-assembly. Proc. R. Soc. A 2014, 470, 20130609.

    Article  Google Scholar 

  37. Lisiecki, I.; Halté, V.; Petit, C.; Pileni, M.-P.; Bigot, J.-Y. Vibration dynamics of supra-crystals of cobalt nanocrystals studied with femtosecond laser pulses. Adv. Mater. 2008, 20, 4176–4179.

    Google Scholar 

  38. DelRio, F. W.; Jaye, C.; Fischer, D. A.; Cook, R. F. Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. Appl. Phys. Lett. 2009, 94, 131909.

    Article  Google Scholar 

  39. Chen, Y. L.; Helm, C. A.; Israelachvili, J. N. Measurements of the elastic properties of surfactant and lipid monolayers. Langmuir 1991, 7, 2694–2699.

    Article  Google Scholar 

  40. Zanoni, R.; Naselli, C.; Bell, J.; Stegeman, G. I.; Seaton, C. T. Elastic properties of Langmuir-Blodgett films. Phys. Rev. Lett. 1986, 57, 2838–2840.

    Article  Google Scholar 

  41. Smaali, K.; Desbief, S.; Foti, G.; Frederiksen, T.; Sanchez-Portal, D.; Arnau, A.; Nys, J. P.; Leclère, P.; Vuillaume, D.; Clément, N. On the mechanical and electronic properties of thiolated gold nanocrystals. Nanoscale 2015, 7, 1809–1819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Paule Pileni.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauvin, M., Yang, N., Yang, Z. et al. Hierarchical mechanical behavior of cobalt supracrystals related to nanocrystallinity. Nano Res. 8, 3480–3487 (2015). https://doi.org/10.1007/s12274-015-0846-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0846-3

Keywords

Navigation