Skip to main content
Log in

A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of non-precious metal-based electrocatalysts has attracted much research attention because of their high oxygen reduction reaction (ORR) activities, low cost, and good durability. By one-step in-situ ball milling of graphite, pyrrole, and cobalt salt without resorting to high-temperature annealing, we developed a general and facile strategy to synthesize bio-inspired cobalt oxide and polypyrrole coupled with a graphene nanosheet (Co3O4-PPy/GN) complex. Herein, the exfoliation of graphite and polymerization of pyrrole occurred simultaneously during the ball milling process. Meanwhile, the Co3O4 and Co-N x ORR active sites were generated from the oxidized cobalt ion, cobalt-PPy, and the newly exfoliated graphene nanosheets via strong π–π stacking interactions. The resultant Co3O4-PPy/GN catalysts showed efficient electrocatalytic performances for ORRs in an alkaline medium with a positive onset and reduction potentials of−0.102 and−0.196 V (vs. Ag/AgCl), as well as a high diffusion-limited current density (4.471 mA·cm−2), which was comparable to that of a Pt/C catalyst (4.941 mA·cm−2). Compared to Pt/C, Co3O4-PPy/GN catalysts displayed better long-term stability, methanol tolerance, and anti-CO-poisoning effects, which are of great significance for the design and development of advanced non-precious metal electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steele, B. C. H.; Heinze, A. Materials for fuel-cell technologies. Nature 2001, 2, 345–352.

    Article  Google Scholar 

  2. Service, R. F. Shrinking fuel cells promise power in your pocket. Science 2002, 2, 1222–1224.

    Article  Google Scholar 

  3. Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 2, 1238–1254.

    Article  Google Scholar 

  4. Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 2, 1212–1213.

    Article  Google Scholar 

  5. Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 2, 2433–2437.

    Article  Google Scholar 

  6. Wen, Z. H.; Ci, S. Q.; Zhang, F.; Feng, X. L.; Cui, S. M.; Mao, S. L.; Luo, S. M.; He, Z.; Chen, J. H. Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 2, 1399–1404.

    Article  Google Scholar 

  7. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 2, 71–74.

    Article  Google Scholar 

  8. Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 2, 2076–2083.

    Google Scholar 

  9. Wang, B. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 2005, 2, 1–15.

    Google Scholar 

  10. Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 2, 63–66.

    Article  Google Scholar 

  11. Seufert, K.; Bocquet, M. L.; Auwarter, W.; Weber-Bargioni, A.; Reichert, J.; Lorente, N.; Barth, J. V. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. Nat. Chem. 2011, 2, 114–119.

    Article  Google Scholar 

  12. Tang, H.; Yin, H.; Wang, J.; Yang, N.; Wang, D.; Tang, Z. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 2, 5585–5589.

    Article  Google Scholar 

  13. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 2, 443–447.

    Article  Google Scholar 

  14. Yuan, X.; Zeng, X.; Zhang, H.; Ma, Z.; Wang, C. Improved performance of proton exchange membrane fuel cells with P-toluenesulfonic acid-doped Co PPy/C as cathode electrocatalyst. J. Am. Chem. Soc. 2010, 2, 1754–1755.

    Article  Google Scholar 

  15. Xu, J. B.; Gao, P.; Zhao, T. S. Non-precious Co3O4 nanorod electrocatalyst for oxygen reduction reaction in anionexchange membrane fuel cells. Energy Environ. Sci. 2012, 2, 5333–5339.

    Article  Google Scholar 

  16. Jiang, C. C.; Guo, Z. Y.; Zhu, Y.; Liu, H.; Wan, M. X.; Jiang, L. Shewanella-mediated biosynthesis of manganese oxide micro-/nanocubes as efficient electrocatalysts for the oxygen reduction reaction. ChemSusChem 2015, 2, 158–163.

    Article  Google Scholar 

  17. Zhou, W.; Ge, L.; Chen, Z. G.; Liang, F.; Xu, H. Y.; Motuzas, J.; Julbe, A.; Zhu, Z. Amorphous iron oxide decorated 3D heterostructured electrode for highly efficient oxygen reduction. Chem. Mater. 2011, 2, 4193–4198.

    Article  Google Scholar 

  18. Lee, J. S.; Park, G. S.; Lee, H. I.; Kim, S. T.; Cao, R. G.; Liu, M. L.; Cho, J. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett. 2011, 2, 5362–5366.

    Article  Google Scholar 

  19. Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 2, 5956–5961.

    Article  Google Scholar 

  20. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 2, 666–669.

    Article  Google Scholar 

  21. Claire, B.; Song, J. M.; Li, X. B.; Wu, X. S.; Nate, B.; Cé cile, N.; Didier, M.; Li, T. B.; Joanna, H.; Alexei, N. M.; Edward H. C.; Phillip, N. F.; Walt, A. H. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 2, 1191–1196.

    Google Scholar 

  22. Neto, A. H. C. The electronic properties of graphene. Rev. Mod. Phys. 2009, 2, 109–162.

    Article  Google Scholar 

  23. Sasha, S.; Dmitriy, A. D.; Geoffrey, H. B. D.; Kevin, M. K.; Eric, J. Z.; Eric, A. S.; Richard, D. P.; SonBinh, T. N.; Rodney, S. R. Graphene-based composite materials. Nature 2006, 2, 282–286.

    Google Scholar 

  24. Geng, D. S.; Chen, Y.; Chen, Y. G.; Li, Y. L.; Li, R. Y.; Sun, X. L.; Ye, S. Y.; Knights, S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 2011, 2, 760–764.

    Article  Google Scholar 

  25. Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mü llen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 2, 9082–9085.

    Article  Google Scholar 

  26. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 2, 780–786.

    Article  Google Scholar 

  27. Li, S.; Wu, D. Q.; Cheng, C.; Wang, J. Z.; Zhang, F.; Su, Y. Z.; Feng, X. L. Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. Angew. Chem., Int. Ed. 2013, 2, 12105–12109.

    Article  Google Scholar 

  28. Jiang, S.; Zhu, C. Z.; Dong, S. J. Cobalt and nitrogencofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. J. Mater. Chem. 2013, 2, 3593–3599.

    Article  Google Scholar 

  29. Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 2, 16136–16137.

    Article  Google Scholar 

  30. Lin, T.; Tang, Y.; Wang, Y.; Bi, H.; Liu, Z.; Huang, F.; Xiec, X.; Jiang, M. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene-sulfur composites for high-performance lithium-sulfur batteries. Energy Environ. Sci. 2013, 2, 1283–1290.

    Article  Google Scholar 

  31. Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. Acs Nano 2008, 2, 2301–2305.

    Article  Google Scholar 

  32. Zhao, Y. C.; Zhan, L.; Tian, J. N.; Sulian Nie; Ning, Z. Enhanced electrocatalytic oxidation of methanol on Pd/ polypyrrole-graphene in alkaline medium. Electrochim. Acta 2011, 2, 1967–1972.

    Article  Google Scholar 

  33. Bora, C.; Dolui, S. K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 2012, 2, 923–932.

    Article  Google Scholar 

  34. Collins, P. G. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 2, 1801–1804.

    Article  Google Scholar 

  35. Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 2, 394–400.

    Article  Google Scholar 

  36. Luo, Z. Q.; Lim, S. H.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 2, 8038–8044.

    Article  Google Scholar 

  37. Song, S. G.; Xue, Y. H.; Feng, L. F.; Elbatal, H.; Wang, P. S.; Moorefield, C. N.; Newkome, G. R.; Dai, L. M. Reversible self-assembly of terpyridine-functionalized graphene oxide for energy conversion. Angew. Chem., Int. Ed. 2014, 2, 1415–1419.

    Article  Google Scholar 

  38. Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Spaceconfinement- induced synthesis of pyridinic- and pyrrolicnitrogen- doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 2, 11755–11759.

    Article  Google Scholar 

  39. Unni, S. M.; Devulapally, S.; Karjule, N.; Kurungot, S. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction. J. Mater. Chem. 2012, 2, 23506–23513.

    Article  Google Scholar 

  40. Ziegelbauer, J. M.; Tim, S. O.; Svitlana, P.; Faisal, A.; Cherno, J.; Plamen, A.; Mukerjee, S. Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications. J. Phys. Chem. C 2008, 2, 8839–8849.

    Article  Google Scholar 

  41. Prakash, D.; Masuda, Y.; Sanjeeviraja, C. Structural electrical and electrochemical studies of LiCoVO4 cathode material for lithium rechargeable batteries. Powder Technol. 2013, 2, 454–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhu or Liming Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Li, Y., Guo, Z. et al. A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Res. 8, 3461–3471 (2015). https://doi.org/10.1007/s12274-015-0844-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0844-5

Keywords

Navigation