Nano Research

, Volume 8, Issue 10, pp 3307–3315 | Cite as

Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

  • Daniela P. Lobo
  • Alan M. Wemyss
  • David J. Smith
  • Anne Straube
  • Kai B. Betteridge
  • Andrew H. J. Salmon
  • Rebecca R. Foster
  • Hesham E. Elhegni
  • Simon C. Satchell
  • Haydn A. Little
  • Raúl Pacheco-Gómez
  • Mark J. Simmons
  • Matthew R. Hicks
  • David O. Bates
  • Alison Rodger
  • Timothy R. Dafforn
  • Kenton P. Arkill
Open Access
Research Article

Abstract

The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature’s primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics.

Keywords

microfluidics nanoparticle M13 bacteriophage wall shear stress fluorescent microscopy 

Supplementary material

12274_2015_831_MOESM1_ESM.pdf (771 kb)
Supplementary material, approximately 771 KB.
12274_2015_831_MOESM2_ESM.mp4 (4.4 mb)
Supplementary material, approximately 4.6 MB.
12274_2015_831_MOESM3_ESM.mp4 (4.8 mb)
Supplementary material, approximately 5 MB.

References

  1. [1]
    Nge, P. N.; Rogers, C. I.; Woolley, A. T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583.CrossRefGoogle Scholar
  2. [2]
    Zarins, C. K.; Giddens, D. P.; Bharadvaj, B. K.; Sottiurai, V. S.; Mabon, R. F.; Glagov, S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear-stress. Circ. Res. 1983, 53, 502–514.CrossRefGoogle Scholar
  3. [3]
    Chatzizisis, Y. S.; Coskun, A. U.; Jonas, M.; Edelman, E. R.; Feldman, C. L.; Stone, P. H. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 2007, 49, 2379–2393.CrossRefGoogle Scholar
  4. [4]
    Katritsis, D.; Kaiktsis, L.; Chaniotis, A.; Pantos, J.; Efstathopoulos, E. P.; Marmarelis, V. Wall shear stress: Theoretical considerations and methods of measurement. Prog. Cardiovasc. Dis. 2007, 49, 307–329.CrossRefGoogle Scholar
  5. [5]
    Reneman, R. S.; Hoeks, A. P. G. Wall shear stress as measured in vivo: Consequences for the design of the arterial system. Med. Biol. Eng. Comput. 2008, 46, 499–507.CrossRefGoogle Scholar
  6. [6]
    Reneman, R. S.; Arts, T.; Hoeks, A. P. G. Wall shear stressan important determinant of endothelial cell function and structure-in the arterial system in vivo. J. Vasc. Res. 2006, 43, 251–269.CrossRefGoogle Scholar
  7. [7]
    Young, E. W. K.; Beebe, D. J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 2010, 39, 1036–1048.CrossRefGoogle Scholar
  8. [8]
    Naughton, J. W.; Sheplak, M. Modern developments in shear-stress measurement. Prog. Aerosp. Sci. 2002, 38, 515–570.CrossRefGoogle Scholar
  9. [9]
    Große, S.; Schröder, W. Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3. Meas. Sci. Technol. 2008, 19, 015403.CrossRefGoogle Scholar
  10. [10]
    Brücker, C.; Spatz, J.; Schröder, W. Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Exp. Fluids. 2005, 39, 464–474.CrossRefGoogle Scholar
  11. [11]
    Smith, M. L.; Long, D. S.; Damiano, E. R.; Ley, K. Nearwall µ-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 2003, 85, 637–645.CrossRefGoogle Scholar
  12. [12]
    Samady, H.; Eshtehardi, P.; McDaniel, M. C.; Suo, J.; Dhawan, S. S.; Maynard, C.; Timmins, L. H.; Quyyumi, A. A.; Giddens, D. P. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 2011, 124, 779–788.CrossRefGoogle Scholar
  13. [13]
    Mao, C. B.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2013, 303, 213–217.CrossRefGoogle Scholar
  14. [14]
    Murugesan, M.; Abbineni, G.; Nimmo, S. L.; Cao, B. R.; Mao, C. B. Virus-based photo-responsive nanowires formed by linking site-directed mutagenesis and chemical reaction. Sci. Rep. 2013, 3, 1820.CrossRefGoogle Scholar
  15. [15]
    Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virusenabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.CrossRefGoogle Scholar
  16. [16]
    Chiang, C. Y.; Mello, C. M.; Gu, J.; Silva, E. C. C. M.; Van Vliet, K. J.; Belcher, A. M. Weaving genetically engineered functionality into mechanically robust virus fibers. Adv. Mater. 2007, 19, 826–832.CrossRefGoogle Scholar
  17. [17]
    Niu, Z. W.; Bruckman, M. A.; Harp, B.; Mello, C. M.; Wang, Q. Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers. Nano Res. 2008, 1, 235–241.CrossRefGoogle Scholar
  18. [18]
    Domaille, D. W.; Lee, J. H.; Cha, J. N. High density DNA loading on the M13 bacteriophage provides access to colorimetric and fluorescent protein microarray biosensors. Chem. Commun. 2013, 49, 1759–1761.CrossRefGoogle Scholar
  19. [19]
    Suthiwangcharoen, N.; Li, T.; Li, K.; Thompson, P.; You, S. J.; Wang, Q. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res. 2011, 4, 483–493.CrossRefGoogle Scholar
  20. [20]
    Carrico, Z. M.; Farkas, M. E.; Zhou, Y.; Hsiao, S. H.; Marks, J. D.; Chokhawala, H.; Clark, D. S.; Francis, M. B. N-terminal labelling of filamentous phage to create cancer marker imaging agents. ACS Nano 2012, 6, 6675–6680.CrossRefGoogle Scholar
  21. [21]
    Khalil, A. S.; Ferrer, J. M.; Brau, R. R.; Kottmann, S. T.; Noren, C. J.; Lang, M. J.; Belcher, A. M. Single M13 bacteriophage tethering and stretching. Proc. Nat. Acad. Sci. USA 2007, 104, 4892–4897.CrossRefGoogle Scholar
  22. [22]
    Pacheco-Gómez, R.; Kraemer, J.; Stokoe, S.; England, H. J.; Penn, C. W.; Stanley, E.; Rodger, A.; Ward, J.; Hicks, M. R.; Dafforn, T. R. Detection of pathogenic bacteria using a homogeneous immunoassay based on shear alignment of virus particles and linear dichroism. Anal. Chem. 2012, 84, 91–97.CrossRefGoogle Scholar
  23. [23]
    Sidhu, S. S. Engineering M13 for phage display. Biomol. Eng. 2001, 18, 57–63CrossRefGoogle Scholar
  24. [24]
    Cheng, X.; Joseph, M. B.; Covington, J. A.; Dafforn, T. R.; Hicks, M. R.; Rodger, A. Continuous-channel flow linear dichroism. Anal. Methods 2012, 4, 3169–3173.CrossRefGoogle Scholar
  25. [25]
    Satchell, S. C.; Tasman, C. H.; Singh, A.; Ni, L.; Geelen, J.; von Ruhland, C. J.; O’Hare, M. J.; Saleem, M. A.; van den Heuvel, L. P.; Mathieson, P. W. Conditionally immortalized human glomerular endothelial cells expressing fenestrations in response to VEGF. Kidney Int. 2006, 69, 1633–1640.CrossRefGoogle Scholar
  26. [26]
    Otsu, N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybernetics. 1979, 9, 62–66.CrossRefGoogle Scholar
  27. [27]
    Schindelin, J.; Arganda-Carreras, I.; Frise, E. Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682.CrossRefGoogle Scholar
  28. [28]
    Barbee, K. A.; Mundel, T.; Lal, R.; Davies, P. F. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am. J. Physiol. 1995, 268, H1765–H1772.Google Scholar
  29. [29]
    Pozrikidis, C. Shear flow over a protuberance on a plane wall. J. Eng. Math. 1997, 31, 29–42.CrossRefGoogle Scholar
  30. [30]
    Arkill, K. P.; Neal, C. R.; Mantell, J. M.; Michel, C. C.; Qvortrup, K.; Rostgaard, J.; Bates, D. O.; Knupp, C.; Squire, J. M. 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 2012, 19, 343–351.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniela P. Lobo
    • 1
  • Alan M. Wemyss
    • 1
    • 2
  • David J. Smith
    • 3
  • Anne Straube
    • 4
  • Kai B. Betteridge
    • 5
  • Andrew H. J. Salmon
    • 5
  • Rebecca R. Foster
    • 6
  • Hesham E. Elhegni
    • 6
  • Simon C. Satchell
    • 6
  • Haydn A. Little
    • 7
  • Raúl Pacheco-Gómez
    • 8
  • Mark J. Simmons
    • 9
  • Matthew R. Hicks
    • 8
  • David O. Bates
    • 10
  • Alison Rodger
    • 1
  • Timothy R. Dafforn
    • 8
  • Kenton P. Arkill
    • 11
  1. 1.Department of Chemistry and Warwick Analytical Science CentreUniversity of WarwickCoventryUK
  2. 2.MOAC Doctoral Training CentreUniversity of WarwickCoventryUK
  3. 3.MathematicsUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  4. 4.Centre for Mechanochemical Cell Biology, Warwick Medical SchoolUniversity of WarwickCoventryUK
  5. 5.Physiology and PharmacologyUniversity of BristolBristolUK
  6. 6.Clinical SciencesUniversity of BristolBristolUK
  7. 7.School of ChemistryUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  8. 8.BiosciencesUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  9. 9.Chemical EngineeringUniversity of BirminghamEdgbaston, Birmingham, West MidlandsUK
  10. 10.School of MedicineUniversity of Nottingham, Queen’s Medical CentreNottinghamUK
  11. 11.BiochemistryUniversity of BristolBristolUK

Personalised recommendations