Nano Research

, Volume 8, Issue 10, pp 3293–3306 | Cite as

Magnetic control: Switchable ultrahigh magnetic gradients at Fe3O4 nanoparticles to enhance solution-phase mass transport

Research Article

Abstract

Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force generated at magnetic-nanoparticle-modified electrodes is presented. It is shown using Fe3O4-nanoparticle-modified electrodes that the ultrahigh magnetic gradients (>108 T·m–1) established at the magnetized Fe3O4 nanoparticles speed up the transport of reactants and products at the electrode surface. Using the Fe(III)/Fe(II)-hexacyanoferrate redox couple, it is demonstrated that this mass transport enhancement can conveniently and repeatedly be switched on and off by applying and removing an external magnetic field, owing to the superparamagnetic properties of magnetite nanoparticles. Thus, it is shown for the first time that magnetic nanoparticles can be used to control mass transport in electrochemical systems. Importantly, this approach does not require any means of mechanical agitation and is therefore particularly interesting for application in micro- and nanofluidic systems and devices.

Keywords

superparamagnetic magnetite nanoparticles nanoparticle-modified electrodes magnetic field effects magnetoelectrochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_830_MOESM1_ESM.pdf (1.9 mb)
Supplementary material, approximately 1965 KB.

References

  1. [1]
    Munir A.; Wang J. L.; Li Z. H.; Zhou H. S. Numerical analysis of a magnetic nanoparticle-enhanced microfluidic surface-based bioassay. Microfluid. Nanofluid. 2010, 8, 641–652.CrossRefGoogle Scholar
  2. [2]
    Yu S. J.; Wei Q.; Du B.; Wu D.; Li H.; Yan L. G.; Ma H. M.; Zhang Y. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens. bioelectron. 2013, 48, 224–229.CrossRefGoogle Scholar
  3. [3]
    Bagheri H.; Afkhami A.; Hashemi P.; Ghanei M. Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv. 2015, 5, 21659–21669.CrossRefGoogle Scholar
  4. [4]
    Li F. Y.; Jiang L. P.; Han J.; Liu Q.; Dong Y. H.; Li Y. Y.; Wei Q. A label-free amperometric immunosensor for the detection of carcinoembryonic antigen based on novel magnetic carbon and gold nanocomposites. Rsc Adv. 2015, 5, 19961–19969.CrossRefGoogle Scholar
  5. [5]
    Corot C.; Robert P.; Idee J. M.; Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Delivery Rev. 2006, 58, 1471–1504.CrossRefGoogle Scholar
  6. [6]
    He C. N.; Wu S.; Zhao N. Q.; Shi C. S.; Liu E. Z.; Li J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.CrossRefGoogle Scholar
  7. [7]
    Zeng G. B.; Shi N.; Hess M.; Chen X.; Cheng W.; Fan T. X.; Niederberger M. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 2015, 9, 4227–4235.CrossRefGoogle Scholar
  8. [8]
    Johnson D. C.; Weber S. G.; Bond A. M.; Wightman R. M.; Shoup R. E.; Krull I. S. Electroanalytical voltammetry in flowing solutions. Anal. Chim. Acta 1986, 180, 187–250.CrossRefGoogle Scholar
  9. [9]
    Deng H. T.; Van Berkel G. J. A thin-layer electrochemical flow cell coupled on-line with electrospray-mass spectrometry for the study of biological redox reactions. Electroanalysis 1999, 11, 857–865.CrossRefGoogle Scholar
  10. [10]
    Compton R. G.; Unwin P. R. Channel and tubular electrodes. J. Electroanal. Chem. 1986, 205, 1–20.CrossRefGoogle Scholar
  11. [11]
    Stamenkovic V. R.; Fowler B.; Mun B. S.; Wang G. F.; Ross P. N.; Lucas C. A.; Markovic N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  12. [12]
    Mayrhofer K. J. J.; Strmcnik D.; Blizanac B. B.; Stamenkovic V.; Arenz M.; Markovic N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188.CrossRefGoogle Scholar
  13. [13]
    Marken F.; Akkermans R. P.; Compton R. G. Voltammetry in the presence of ultrasound: The limit of acoustic streaming induced diffusion layer thinning and the effect of solvent viscosity. J. Electroanal. Chem. 1996, 415, 55–63.CrossRefGoogle Scholar
  14. [14]
    Compton R. G.; Eklund J. C.; Page S. D.; Mason T. J.; Walton D. J. Voltammetry in the presence of ultrasound: Mass transport effects. J. Appl. Electrochem. 1996, 26, 775–784.CrossRefGoogle Scholar
  15. [15]
    Chaure N. B.; Coey J. M. D. Enhanced oxygen reduction at composite electrodes producing a large magnetic gradient. J. Electrochem. Soc. 2009, 156, F39–F46.CrossRefGoogle Scholar
  16. [16]
    Weston M. C.; Gerner M. D.; Fritsch I. Magnetic fields for fluid motion. Anal. Chem. 2010, 82, 3411–3418.CrossRefGoogle Scholar
  17. [17]
    Tschulik K.; Cierpka C.; Gebert A.; Schultz L.; Kahler C. J.; Uhlemann M. In situ analysis of three-dimensional electrolyte convection evolving during the electrodeposition of copper in magnetic gradient fields. Anal. Chem. 2011, 83, 3275–3281.CrossRefGoogle Scholar
  18. [18]
    Sahore V.; Fritsch I. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: Toward multiple, parallel analyses. Anal. Chem. 2014, 86, 9405–9411.CrossRefGoogle Scholar
  19. [19]
    Koza J. A.; Mühlenhoff, S.; Uhlemann M.; Eckert K.; Gebert A.; Schultz L. Desorption of hydrogen from an electrode surface under influence of an external magnetic field—In-situ microscopic observations. Electrochem. Commun. 2009, 11, 425–429.CrossRefGoogle Scholar
  20. [20]
    Leventis N.; Gao X. R. Magnetohydrodynamic electrochemistry in the field of Nd-Fe-B magnets. Theory experiment, and application in self-powered flow delivery systems. Anal. Chem. 2001, 73, 3981–3992.CrossRefGoogle Scholar
  21. [21]
    Fahidy T. Z. Magnetoelectrolysis. J. Appl. Electrochem. 1983, 13, 553–563.CrossRefGoogle Scholar
  22. [22]
    Ragsdale S. R.; Grant K. M.; White H. S. Electrochemically generated magnetic forces. Enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields. J. Am. Chem. Soc. 1998, 120, 13461–13468.CrossRefGoogle Scholar
  23. [23]
    Mutschke G.; Tschulik K.; Weier T.; Uhlemann M.; Bund A.; Fröhlich, J. On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim. Acta 2010, 55, 9060–9066.CrossRefGoogle Scholar
  24. [24]
    Mutschke G.; Tschulik K.; Uhlemann M.; Bund A.; Fröhlich, J. Comment on “magnetic structuring of electrodeposits”. Phys. Rev. Lett. 2012, 109, 229401.CrossRefGoogle Scholar
  25. [25]
    Konig J.; Tschulik K.; Buttner L.; Uhlemann M.; Czarske J. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields. Anal. Chem. 2013, 85, 3087–3094.CrossRefGoogle Scholar
  26. [26]
    Monzon L. M. A.; Coey J. M. D. Magnetic fields in electrochemistry: The Kelvin force. A mini-review. Electrochem. Commun. 2014, 42, 42–45.CrossRefGoogle Scholar
  27. [27]
    Monzon L. M. A.; Coey J. M. D. Magnetic fields in electrochemistry: The Lorentz force. A mini-review. Electrochem. Commun. 2014, 42, 38–41.CrossRefGoogle Scholar
  28. [28]
    Wang L. B.; Wakayama N. I.; Okada T. Numerical simulation of enhancement of mass transfer in the cathode electrode of a PEM fuel cell by magnet particles deposited in the cathode-side catalyst layer. Chem. Eng. Sci. 2005, 60, 4453–4467.CrossRefGoogle Scholar
  29. [29]
    Coey J. M. D.; Rhen F. M. F.; Dunne P.; McMurry S. The magnetic concentration gradient force—Is it real? J. Solid State Electrochem. 2007, 11, 711–717.CrossRefGoogle Scholar
  30. [30]
    Tschulik K.; Sueptitz R.; Uhlemann M.; Schultz L.; Gebert A. Electrodeposition of separated 3D metallic structures by pulse-reverse plating in magnetic gradient fields. Electrochim. Acta 2011, 56, 5174–5177.CrossRefGoogle Scholar
  31. [31]
    Dunne P.; Mazza L.; Coey J. M. D. Magnetic structuring of electrodeposits. Phys. Rev. Lett. 2011, 107, 024501.CrossRefGoogle Scholar
  32. [32]
    Caruntu D.; Caruntu G.; O’ Connor C. J. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from nonaqueous homogeneous solutions of polyols. J. Phys. D: Appl. Phys. 2007, 40, 5801–5809.CrossRefGoogle Scholar
  33. [33]
    Della Pina C.; Falletta E.; Ferretti A. M.; Ponti A.; Gentili G. G.; Verri V.; Nesti R. Microwave characterization of magnetically hard and soft ferrite nanoparticles in K-band. J. Appl. Phys. 2014, 116, 154306.CrossRefGoogle Scholar
  34. [34]
    Wan Y.; Guo Z. R.; Jiang X. L.; Fang K.; Lu X.; Zhang Y.; Gu N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. colloid interface sci. 2013, 394, 263–268.CrossRefGoogle Scholar
  35. [35]
    Lyon J. L.; Fleming D. A.; Stone M. B.; Schiffer P.; Williams M. E. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 2004, 4, 719–723.CrossRefGoogle Scholar
  36. [36]
    Tschulik K.; Ngamchuea K.; Ziegler C.; Beier M. G.; Damm C.; Eychmueller A.; Compton R. G. Core–shell nanoparticles: Characterizing multifunctional materials beyond imaging—distinguishing and quantifying perfect and broken shells. Adv. Funct. Mat. 2015, 25, 5149–5158.CrossRefGoogle Scholar
  37. [37]
    Kozhina G. A.; Ermakov A. N.; Fetisov V. B.; Fetisov A. V. Anomalous currents under cyclic polarization of magnetite electrode in acidic medium. Russ. J. Electrochem. 2012, 48, 532–537.CrossRefGoogle Scholar
  38. [38]
    Pumera M.; Aldavert M.; Mills C.; Merkoçi, A.; Alegret S. Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochim. Acta 2005, 50, 3702–3707.CrossRefGoogle Scholar
  39. [39]
    Teo W. Z.; Pumera M. Direct voltammetric determination of redox-active iron in carbon nanotubes. Chemphyschem 2014, 15, 3819–3823.CrossRefGoogle Scholar
  40. [40]
    Amatore C.; Pebay C.; Thouin L.; Wang A. F.; Warkocz J. S. Difference between ultramicroelectrodes and microelectrodes: Influence of natural convection. Anal. Chem. 2010, 82, 6933–6939.CrossRefGoogle Scholar
  41. [41]
    Amatore C.; Klymenko O. V.; Svir I. Importance of correct prediction of initial concentrations in voltammetric scans: Contrasting roles of thermodynamics, kinetics, and natural convection. Anal. Chem. 2012, 84, 2792–2798.CrossRefGoogle Scholar
  42. [42]
    Tschulik K.; Haddou B.; Omanovic D.; Rees N. V.; Compton R. G. Coulometric sizing of nanoparticles: Cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles. Nano Res. 2013, 6, 836–841.CrossRefGoogle Scholar
  43. [43]
    Zhou Y. G.; Rees N. V.; Pillay J.; Tshikhudo R.; Vilakazi S.; Compton R. G. Gold nanoparticles show electroactivity: Counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 2012, 48, 224–226.CrossRefGoogle Scholar
  44. [44]
    Brainina K. Z.; Galperin L. G.; Kiryuhina T. Y.; Galperin A. L.; Stozhko N. Y.; Murzakaev A. M.; Timoshenkova O. R. Silver nanoparticles electrooxidation: Theory and experiment. J. Solid State Electrochem. 2011, 16, 2365–2372.CrossRefGoogle Scholar
  45. [45]
    Lu Z. Y.; Muir D. M. A comparative-study of the oxidative and reductive dissolution of magnetite in acidified CuSO4-acetonitrile-H2O and CuCl2-NaCl-H2O leach solutions. J. Appl. Electrochem. 1986, 16, 745–756.CrossRefGoogle Scholar
  46. [46]
    Bund A.; Koehler S.; Kuehnlein H. H.; Plieth W. Magnetic field effects in electrochemical reactions. Electrochim. Acta 2003, 49, 147–152.CrossRefGoogle Scholar
  47. [47]
    Takahashi F.; Sakai Y.; Tamura T. The Mhd effect and its relaxation process on electric-current in the electrolysis of ferricyanide reduction and ferrocyanide oxidation. Electrochim. Acta 1983, 28, 1147–1151.CrossRefGoogle Scholar
  48. [48]
    Mutschke G.; Hess A.; Bund A.; Fröhlich, J. On the origin of horizontal counter-rotating electrolyte flow during copper magnetoelectrolysis. Electrochim. Acta 2010, 55, 1543–1547.CrossRefGoogle Scholar
  49. [49]
    Pullins M. D.; Grant K. M.; White H. S. Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes. J. Phys. Chem. B 2001, 105, 8989–8994.CrossRefGoogle Scholar
  50. [50]
    Tschulik K.; Sueptitz R.; Koza J.; Uhlemann M.; Mutschke G.; Weier T.; Gebert A.; Schultz L. Studies on the patterning effect of copper deposits in magnetic gradient fields. Electrochim. Acta 2010, 56, 297–304.CrossRefGoogle Scholar
  51. [51]
    Wang X. P.; Zhao J. J.; Hu Y. P.; Li L.; Wang C. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution. Electrochim. Acta 2014, 117, 113–119.CrossRefGoogle Scholar
  52. [52]
    Yang X. G.; Tschulik K.; Uhlemann M.; Odenbach S.; Eckert K. Enrichment of paramagnetic ions from homogeneous solutions in inhomogeneous magnetic fields. J. Phys. Chem. Lett. 2012, 3, 3559–3564.CrossRefGoogle Scholar
  53. [53]
    Gorobets O. Y.; Gorobets V. Y.; Derecha D. O.; Brukva O. M. Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field. J. Phys. Chem. C 2008, 112, 3373–3375.CrossRefGoogle Scholar
  54. [54]
    Tschulik K.; Koza J. A.; Uhlemann M.; Gebert A.; Schultz L. Effects of well-defined magnetic field gradients on the electrodeposition of copper and bismuth. Electrochem. Commun. 2009, 11, 2241–2244.CrossRefGoogle Scholar
  55. [55]
    Mutschke G.; Bund A. On the 3D character of the magnetohydrodynamic effect during metal electrodeposition in cuboid cells. Electrochem. Commun. 2008, 10, 597–601.CrossRefGoogle Scholar
  56. [56]
    Rákoš, M.; Varga Z. Magnetic properties of two complex ferric paramagnetics. Czech. J. Phys. 1965, 15, 241–250.CrossRefGoogle Scholar
  57. [57]
    Kodama R. H. Magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations