Skip to main content
Log in

Basic science of water: Challenges and current status towards a molecular picture

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometer films. Nature 2001, 413, 51–54.

    Article  Google Scholar 

  2. Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Nä slund, L. Å.; Hirsch, T. K.; Ojamä e, L.; Glatzel, P. et al. The structure of the first coordination shell in liquid water. Science 2004, 304, 995–999.

    Article  Google Scholar 

  3. Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Messer, B. M.; Cohen, R. C.; Saykally, R. J. Energetics of hydrogen bond network rearrangements in liquid water. Science 2004, 306, 851–853.

    Article  Google Scholar 

  4. Head-Gordon, T.; Johnson, M. E. Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. USA 2006, 103, 7973–7977.

    Article  Google Scholar 

  5. Doering, D. L.; Madey, T. E. The adsorption of water on clean and oxygen-dosed Ru(011). Surf. Sci. 1982, 123, 305–337.

    Article  Google Scholar 

  6. Held, G.; Menzel, D. The structure of the p(v3 × v3)R30° bilayer of D2O on Ru(001). Surf. Sci. 1994, 316, 92–102.

    Article  Google Scholar 

  7. Feibelman, P. J. Partial dissociation of water on Ru(0001). Science 2002, 295, 99–102.

    Article  Google Scholar 

  8. Cerdá, J.; Michaelides, A.; Bocquet, M.-L.; Feibelman, P. J.; Mitsui, T.; Rose, M.; Fomin, E.; Salmeron, M. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 2004, 93, 116101.

    Article  Google Scholar 

  9. Carrasco, J.; Michaelides, A.; Forster, M.; Haq, S.; Raval, R.; Hodgson, A. A one-dimensional ice structure built from pentagons. Nat. Mater. 2009, 8, 427–431.

    Article  Google Scholar 

  10. Nie, S.; Feibelman, P. J.; Bartelt, N. C.; Thürmer, K. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 2010, 105, 026102.

    Article  Google Scholar 

  11. Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674.

    Article  Google Scholar 

  12. Lin, K.; Zhou, X.-G.; Liu, S. L.; Luo, Y. Identification of free OHand its implication on structural changes of liquid water. Chin. J. Chem. Phys. 2013, 26, 121.

    Article  Google Scholar 

  13. Mishima, O. Relationship between melting and amorphization of ice. Nature 1996, 384, 546–549.

    Article  Google Scholar 

  14. Loerting, T.; Salzmann, C.; Kohl, I.; Mayer, E.; Hallbrucker, A. A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 2001, 3, 5355–5357.

    Article  Google Scholar 

  15. Denbenedetti, P. G.; Stanley, H. E. Supercooled and glassy water. Phys. Today 2003, 56, 40–46.

    Article  Google Scholar 

  16. Xu, L. M.; Kumar, P.; Buldyrev, S. V.; Chen, S. H.; Poole, P. H.; Sciortino, F.; Stanley, H. E. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc. Natl. Acad. Sci. USA 2005, 102, 16558–16562.

    Article  Google Scholar 

  17. Hoffmann, M. M.; Conradi, M. S. Are there hydrogen bonds in supercritical water? J. Am. Chem. Soc. 1997, 119, 3811–3817.

    Article  Google Scholar 

  18. Sahle, C. J.; Sternemann, C.; Schmidt, C.; Lehtola, S.; Jahn, S.; Simonelli, L.; Huotari, S.; Hakala, M.; Pylkkänen, T.; Nyrow, A. et al. Microscopic structure of water at elevated pressures and temperatures. Proc. Natl. Acad. Sci. USA 2013, 110, 6301–6306.

    Article  Google Scholar 

  19. Tretyakov, M. Y.; Serov, E. A.; Koshelev, M. A.; Parshin, V. V.; Krupnov, A. F. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature. Phys. Rev. Lett. 2013, 110, 093001.

    Article  Google Scholar 

  20. Cho, C. H.; Singh, S.; Robinson, G. W. Understanding all of water’s anomalies with a nonlocal potential. J. Chem. Phys. 1997, 107, 7979–7988.

    Article  Google Scholar 

  21. Tanaka, H. Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys. Rev. Lett. 1998, 80, 5750–5753.

    Article  Google Scholar 

  22. Vedamuthu, M.; Singh, S.; Robinson, G. W. Properties of liquid water: Origin of the density anomalies. J. Phys. Chem. 1994, 98, 2222–2230.

    Article  Google Scholar 

  23. Vedamuthu, M.; Singh, S.; Robinson, G. W. Accurate mixture- model densities for D2O. J. Phys. Chem. 1994, 98, 8591–8593.

    Article  Google Scholar 

  24. Dougherty, R. C.; Howard, L. N. Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties. J. Chem. Phys. 1998, 109, 7379–7393.

    Article  Google Scholar 

  25. Alphonse, N. K.; Dillon, S. R.; Dougherty, R. C.; Galligan, D. K.; Howard, L. N. Direct Raman evidence for a weak continuous phase transition in liquid water. J. Phys. Chem. A 2006, 110, 7577–7580.

    Article  Google Scholar 

  26. Franzese, G.; Stanley, H. E. The Widom line of supercooled water. J. Phys.-Condens. Matter 2007, 19, 205126.

    Google Scholar 

  27. Kumar, P.; Franzese, G.; Stanley, H. E. Dynamics and thermodynamics of water. J. Phys.-Condens. Matter 2008, 20, 244114.

    Article  Google Scholar 

  28. Angell, C. A.; Bressel, R. D.; Hemmati, M.; Sare, E. J.; Tucker, J. C. Water and its anomalies in perspective: Tetrahedral liquids with and without liquid-liquid phase transitions. Phys. Chem. Chem. Phys. 2000, 2, 1559–1566.

    Article  Google Scholar 

  29. Kumar, P.; Stanley, H. E. Thermal conductivity minimum: A new water anomaly. J. Phys. Chem. B 2011, 115, 14269–14273.

    Google Scholar 

  30. Murphy, D. M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565.

    Article  Google Scholar 

  31. Mpemba, E. B.; Osborne, D. G. Cool? Phys. Educ. 1969, 4, 172–175.

    Article  Google Scholar 

  32. Shell, M. S.; Debenedetti, P. G.; Panagiotopoulos, A. Z. Molecular structural order and anomalies in liquid silica. Phys. Rev. E 2002, 66, 011202.

    Article  Google Scholar 

  33. Hujo, W.; Jabes, B. S.; Rana, V. K.; Chakravarty, C.; Molinero, V. The rise and fall of anomalies in tetrahedral liquids. J. Stat. Phys. 2011, 145, 293–312.

    Article  Google Scholar 

  34. Jabes, B. S.; Nayar, D.; Dhabal, D.; Molinero, V.; Chakrabarty, C. Water and other tetrahedral liquids: Order, anomalies and solvation. J. Phys.-Condens. Matter 2012, 24, 284116.

    Google Scholar 

  35. Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The nature of hydrated excess proton in water. Nature 1999, 397, 601–604.

    Article  Google Scholar 

  36. Ranea, V. A.; Michaelides, A.; Ramírez, R.; de Andres, P. L.; Vergés, J. A.; King, D. A. Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange. Phys. Rev. Lett. 2004, 92, 136104.

    Article  Google Scholar 

  37. Tuckerman, M. E.; Marx, D.; Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 2002, 417, 925–929.

    Article  Google Scholar 

  38. Li, X.-Z.; Walker, B.; Michaelides, A. Quantum nature of the hydrogen bond. Proc. Natl. Acad. Sci. USA 2011, 108, 6369–6373.

    Article  Google Scholar 

  39. Chen, J.; Li, X. Z.; Zhang, Q. F.; Michaelides, A.; Wang, E. G. Nature of proton transport in a water-filled carbon nanotube and in liquid water. Phys. Chem. Chem. Phys. 2013, 15, 6344–6349.

    Article  Google Scholar 

  40. Li, X. Z.; Probert, M. I. J.; Alavi, A.; Michaelides, A. Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys. Rev. Lett. 2010, 104, 066102.

    Google Scholar 

  41. Paesani, F.; Voth, G. A. The properties of water: Insights from quantum simulations. J. Phys. Chem. B 2009, 113, 5702–5719.

    Article  Google Scholar 

  42. Thiel, P. A.; Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 1987, 7, 211–385.

    Article  Google Scholar 

  43. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 2002, 46, 1–308.

    Article  Google Scholar 

  44. Hodgson, A.; Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 2009, 64, 381–451.

    Article  Google Scholar 

  45. Kasemo, B. Biological surface science. Curr. Opin. Solid State Mater. Sci. 1998, 3, 451–459.

    Article  Google Scholar 

  46. Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78, 2855–2858.

    Article  Google Scholar 

  47. Meng, S.; Zhang, Z. Y.; Kaxiras, E. Tuning solid surfaces from hydrophobic to superhydrophilic by submonolayer surface modification. Phys. Rev. Lett. 2006, 97, 036107.

    Article  Google Scholar 

  48. Cheh, J.; Gao, Y.; Wang, C. L.; Zhao, H.; Fang, H. P. Ice or water: Thermal properties of monolayer water adsorbed on a substrate. J. Stat. Mech. 2013, 2013, P06009.

    Article  Google Scholar 

  49. Feibelman, P. J. DFT versus the “real world” (or, waiting for Godft). Top. Catal. 2010, 53, 417–422.

    Article  Google Scholar 

  50. Meng, S.; Wang, E. G.; Gao, S. W. A molecular picture of hydrophilic and hydrophobic interactions from ab initio density functional theory calculations. J. Chem. Phys. 2003, 119, 7617–7620.

    Article  Google Scholar 

  51. Smith, R. S.; Huang, C.; Wong, E. K. L.; Kay, B. D. Desorption and crystallization kinetics in nanoscale thin films of amorphous water ice. Surf. Sci. 1996, 367, L13–L18.

    Article  Google Scholar 

  52. Wang, C. L.; Lu, H. J.; Wang, Z. G.; Xiu, P.; Zhou, B.; Zuo, G. H.; Wan, R. Z.; Hu, J.; Fang, H. P. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 2009, 103, 137801.

    Google Scholar 

  53. Zhu, C. Q.; Li, H.; Huang, Y. F.; Zeng, X. C.; Meng, S. Microscopic insight into surface wetting: Relations between interfacial water structure and the underlying lattice constant. Phys. Rev. Lett. 2013, 110, 126101.

    Google Scholar 

  54. Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

    Article  Google Scholar 

  55. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  56. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  57. Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.

    Article  Google Scholar 

  58. Song, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497–1506.

    Article  Google Scholar 

  59. Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

    Article  Google Scholar 

  60. Yagi, M.; Kaneko, M. Molecular catalysts for water oxidation. Chem. Rev. 2001, 101, 21–35.

    Article  Google Scholar 

  61. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  Google Scholar 

  62. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductorbased photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  63. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.

    Article  Google Scholar 

  64. Guo, Q.; Xu, C. B.; Ren, Z. F.; Yang, W. S.; Ma, Z. B.; Dai, D. X.; Fan, H. J.; Minton, T. K.; Yang, X. M. Stepwise photocatalytic dissociation of methanol and water on a TiO2(110) surface. J. Am. Chem. Soc. 2012, 134, 13366–13373.

    Google Scholar 

  65. Chiashi, S.; Hanashima, T.; Mitobe, R.; Nagatsu, K.; Yamamoto, T.; Homma, Y. Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. Lett. 2014, 5, 408–412.

    Article  Google Scholar 

  66. Soper, A. K.; Bruni, F.; Ricci, M. A. Water confined in Vycor glass. II. Excluded volume effects on the radial distribution functions. J. Phys. Chem. 1998, 109, 1486–1494.

    Article  Google Scholar 

  67. Weik, M. Low-temperature behavior of water confined by biological macromolecules and its relation to protein dynamics. Eur. Phys. J. E-Soft Matter Biol. Phys. 2003, 12, 153–158.

    Article  Google Scholar 

  68. Koga, K.; Gao, G. T.; Tanka, H.; Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805.

    Article  Google Scholar 

  69. Kolesnikov, A. I.; Zanotti, J.-M.; Loong, C.-K.; Thiyaigarajan, P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 2004, 93, 035503.

    Article  Google Scholar 

  70. Bergman, R.; Swenson, J. Dynamics of supercooled water in confined geometry. Nature 2000, 403, 283–286.

    Article  Google Scholar 

  71. Su, X. C.; Lianos, L.; Shen, Y. R.; Somorjai, G. A. Surfaceinduced ferroelectric ice on Pt(111). Phys. Rev. Lett. 1998, 80, 1533.

    Article  Google Scholar 

  72. Meng, S.; Chakarov, D. V.; Kasemo, B.; Gao, S. W. Two dimensional hydration shells of alkali metal ions at a hydrophobic surface. J. Chem. Phys. 2004, 121, 12572.

    Article  Google Scholar 

  73. Meng, S.; Gao, S. W. Formation and interaction of hydrated alkali metal ions at the graphite-water interface. J. Chem. Phys. 2006, 125, 014708.

    Article  Google Scholar 

  74. Matsui, H.; Tadokoro, M. Eigen-like hydrated protons traveling with a local distortion through the water nanotube in new molecular porous crystals {[MIII(H2bim)3](TMA)·20H2O}n (M = Co, Rh, Ru). J. Chem. Phys. 2012, 137, 144503.

    Article  Google Scholar 

  75. Zhao, Y.; Li, H.; Zeng, X. C. First-principles molecular dynamics simulation of atmospherically relevant anion solvation in supercooled water droplet. J. Am. Chem. Soc. 2013, 135, 15549–15558.

    Article  Google Scholar 

  76. Loris, R.; Langhorst, U.; De Vos, S.; Decanniere, K.; Bouckaert, J.; Maes, D.; Transue, T. R.; Steyaert, J. Conserved water molecules in a large family of microbial ribonucleases. Proteins-Struct., Funct., Bioinf. 1999, 36, 117–134.

    Article  Google Scholar 

  77. Murata, K.; Mitsuoka, K.; Hirai, T.; Walz, T.; Agre, P.; Heymann, J. B.; Engel, A.; Fujiyoshi, Y. Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599–605.

    Article  Google Scholar 

  78. Pal, S. K.; Peon, J.; Zewail, A. H. Biological water at the protein surface: Dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. USA 2002, 99, 1763–1768.

    Article  Google Scholar 

  79. Zhong, D. P.; Pal, S. K.; Zewail, A. H. Biological water: A critique. Chem. Phys. Lett. 2011, 503, 1–11.

    Article  Google Scholar 

  80. Kropman, M. F.; Bakker, H. J. Dynamics of water molecules in aqueous solvation shells. Science 2001, 291, 2118–2120.

    Article  Google Scholar 

  81. Das, D.; Samanta, G.; Mandal, B. K.; Chowdhury, T. R.; Chanda, C. R.; Chowdhury, P. P.; Basu, G. K.; Chakraborti, D. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 1996, 18, 5–15.

    Article  Google Scholar 

  82. Bhattacharya, P.; Mukherjee, A.; Mukherjee, A. B. Arsenic in groundwater of India. Enc. Environ. Health 2011, 150–164.

    Chapter  Google Scholar 

  83. Devi, N. L.; Chandra, Y. I.; Qi, S. Recent status of arsenic contamination in groundwater of northeastern India - A review. Rep. Op. 2009, 1, 22–32.

    Google Scholar 

  84. Pal, T.; Mukherjee, P. K.; Sengupta, S.; Bhattacharyya, A. K.; Shome, S. Arsenic pollution in groundwater of West Bengal, India - An insight into the problem by subsurface sediment analysis. Gondwana Res. 2002, 5, 501–512.

    Article  Google Scholar 

  85. Rodriguez-Lado, L.; Sun, G. F.; Berg, M.; Zhang, Q.; Xue, H. B.; Zheng, Q. M.; Johnson, C. A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868.

    Article  Google Scholar 

  86. Michael, H. A. An arsenic forcast for China. Science 2013, 341, 852–853.

    Article  Google Scholar 

  87. Yu, G. Q.; Sun, D. J.; Zheng, Y. Health effects of exposure to natural arsenic in groundwater and coal in China: An overview of occurrence. Environ. Health Perspect. 2007, 115, 636–642.

    Article  Google Scholar 

  88. Frost, F.; Franke, D.; Pierson, K.; Woodruff, L.; Raasina, B.; Davis, R.; Davies, J. A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA. Environ. Geochem. Health 1993, 15, 209–214.

    Article  Google Scholar 

  89. Hudak, P. F. Distribution of arsenic concentrations in groundwater of the Seymour Aquifer, Texas, USA. Int. J. Environ. Health Res. 2008, 18, 79–82.

    Article  Google Scholar 

  90. Barringer, J. L.; Reilly, P. A.; Eberl, D. D.; Blum, A. E.; Bonin, J. L.; Rosman, R.; Hirst, B.; Alebus, M.; Cenno, K.; Gorska, M. Arsenic in sediments, groundwater, and streamwater of a glauconitic Coastal Plain terrain, New Jersey, USA - Chemical “fingerprints” for geogenic and anthropogenic sources. Appl. Geochem. 2011, 26, 763–776.

    Article  Google Scholar 

  91. Ghanem, M.; Samhan, S.; Carlier, E.; Ali, W. Groundwater pollution due to pesticides and heavy metals in north West Bank. J. Environ. Prot. 2011, 2, 429–434.

    Article  Google Scholar 

  92. Dsikowitzky, L.; Nordhaus, I.; Jennerjahn, T. C.; Khrycheva, P.; Sivatharshan, Y.; Yuwono, E.; Schwarzbauer, J. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Mar. Pollut. Bull. 2011, 62, 851–862.

    Article  Google Scholar 

  93. Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K. Biological effects of anthropogenic contaminants in the San Francisco Estuary. Environ. Res. 2007, 105, 156–174.

    Article  Google Scholar 

  94. Feng, L. H.; Zhang, X. C.; Luo, G. Y. Research on the risk of water shortages and the carrying capacity of water resources in Yiwu, China. Hum. Ecol. Risk Assess. 2009, 15, 714–726.

    Article  Google Scholar 

  95. Pomeranz, K. The great Himalayan watershed: Water shortages, mega-projects and environmental politics in China, India, and Southeast Asia. Asia Pac. J. 2009, 30-2-09.

    Google Scholar 

  96. Li, Y.-S.; Raso, G.; Zhao, Z.-Y.; He, Y.-K.; Ellis, M. K.; McManus, D. P. Large water management projects and schistosomiasis control, Dongting Lake Region, China. Emerg. Infect. Dis. 2007, 13, 973–979.

    Article  Google Scholar 

  97. Cerci, Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination 2002, 142, 257–266.

    Article  Google Scholar 

  98. Caron, D. A.; Garneau, M.-E.; Seubert, E.; Howard, M. D. A.; Darjany, L.; Schnetzer, A.; Cetinic, I.; Filteau, G.; Lauri, P.; Jones, B. et al. Harmful algae and their potential impacts on desalination operations off southern California. Water Res. 2010, 44, 385–416.

    Article  Google Scholar 

  99. Lattemann, S.; Höpner, T. Environmental impact and impact assessment of seawater desalination. Desalination 2008, 220, 1–15.

    Article  Google Scholar 

  100. Hutton, G. Global Costs and Benefits of Drinking-Water Supply and Sanitation Interventions to Reach the MDG Target and Universal Coverage; World Health Organization: Geneva, Switzerland, 2012.

    Google Scholar 

  101. Gross, B.; van Wijk, C.; Mukherjee, N. Linking Sustainability with Demand, Gender and Poverty; Water and Sanitation Program, The World Bank, IRC International Water and Sanitation Centre: Delft, The Netherlands, 2000.

    Google Scholar 

  102. Daughton, C. G. Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 2004, 24, 711–732.

    Article  Google Scholar 

  103. Richardson, S. D. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal. Chem. 2003, 22, 666–684.

    Article  Google Scholar 

  104. Richardson, S. D.; Ternes, T. A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2011, 83, 4614–4648.

    Article  Google Scholar 

  105. Barrett, J. R. Chemical contaminants in drinking water: Where do we go from here? Environ. Health Perspect. 2014, 122, A80.

    Article  Google Scholar 

  106. Richardson, S. D. New disinfection by-product issues: Emerging DBPs and alternative routes of exposure. Global NEST J. 2005, 7, 43–60.

    Google Scholar 

  107. Boorman, G. A.; Dellarco, V.; Dunnick, J. K.; Chapin, R. E.; Hunter, S.; Hauchman, F.; Gardner, H.; Cox, M.; Sills, R. C. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107, 207–217.

    Article  Google Scholar 

  108. Krasner, S. W.; Weinberg, H. S.; Richardson, S. D.; Pastor, S. J.; Chinn, R.; Sclimenti, M. J.; Onstad, G. D.; Thruston, A. D. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 2006, 40, 7175–7185.

    Article  Google Scholar 

  109. Iriarte, U.; Á lvarez-Uriarte, J. I.; López-Fonseca, R.; Gonzá lez-Velasco, J. R. Trihalomethane formation in ozonated and chlorinated surface water. Environ. Chem. Lett. 2003, 1, 57–61.

    Article  Google Scholar 

  110. Rigobello, E. S.; Dantas, A. D. B.; Bernardo, L. D.; Vieira, E. M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere 2013, 92, 184–191.

    Article  Google Scholar 

  111. Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002, 128, 253–260.

    Article  Google Scholar 

  112. Binnie, C.; Kimber, M.; Smethurst, G. Basic Water Treatmentm, 3rd ed.; Thomas Telford Publishing, Thomas Telford, Ltd: London, 2002.

    Google Scholar 

  113. Guzzella, L.; Feretti, D.; Monarca, S. Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply. Water Res. 2002, 36, 4307–4318.

    Article  Google Scholar 

  114. Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. Stateof- the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76.

    Article  Google Scholar 

  115. Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology and the environment. Science 2011, 333, 712–717.

    Article  Google Scholar 

  116. Xu, J.; Ruan, G. L.; Chu, X. Z.; Yao, Y.; Su, B. W.; Gao, C. J. A pilot study of UFpretreatment without any chemicals for SWRO desalination in China. Desalination 2007, 207, 216–226.

    Article  Google Scholar 

  117. Yip, N. Y.; Tiraferri, A.; Phillip, W. A.; Schiffrnan, J. D.; Hoover, L. A.; Kim, Y. C.; Elimelech, M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol. 2011, 45, 4360–4369.

    Article  Google Scholar 

  118. Gupta, V. K.; Ali, I. Water treatment by membrane filtration techniques. In Environmental Water: Advances in Treatment, Remediation and Recycling; Gupta, V. K.; Ali, I., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; pp 135–154.

    Chapter  Google Scholar 

  119. Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K. Perspective of membrane technology in dairy industry: A review. Asian-Australas. J. Anim. Sci. 2013, 26, 1347–1358.

    Google Scholar 

  120. Rao, A. P.; Desai, N. V.; Rangarajan, R. Interfacially synthesized thin film composite ROmembranes for seawater desalination. J. Membr. Sci. 1997, 124, 263–272.

    Article  Google Scholar 

  121. Paul, D. R. The role of membrane pressure in reverse osmosis. J. App. Polym. Sci. 1972, 16, 771–782.

    Article  Google Scholar 

  122. Paul, D. R. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 2004, 241, 371–386.

    Article  Google Scholar 

  123. Gerard, R.; Hachisuka, H.; Hirose, M. New membrane developments expanding the horizon for the application of reverse osmosis technology. Desalination 1998, 119, 47–55.

    Article  Google Scholar 

  124. Sidney, L.; Srinivasa, S. Seawater dimineralization by means of an osmotic membrane. In Saline Water Conversion-II; Gould, R. F., Ed.; American Chemical Society: Washington, D. C., 1963; pp 117–132.

    Google Scholar 

  125. McCutcheon, J. R.; Elimelech, M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 2008, 318, 458–466.

    Article  Google Scholar 

  126. Tang, Z. H.; Qiu, C. Q.; McCutcheon, J. R.; Yoon, K.; Ma, H. Y.; Fang, D. F.; Lee, E.; Kopp, C.; Hsiao, B. S.; Chu, B. Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J. Polym. Sci., Part B-Polym. Phys. 2009, 47, 2288–2300.

    Article  Google Scholar 

  127. Arena, J. T.; McCloskey, B.; Freeman, B. D.; McCutcheon, J. R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Membr. Sci. 2011, 375, 55–62.

    Article  Google Scholar 

  128. Bui, N.-N.; Lind, M. L.; Hoek, E. M. V.; McCutcheon, J. R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 2011, 385–386, 10–19.

    Article  Google Scholar 

  129. Loeb, S. The Loeb-Sourirajan membrane: How it came about. In ACS Symposium Series - Synthetic Membranes: Desalination; Turbak, A. F., Ed.; American Chemical Society: Washington, D. C., 1981; pp 1–9.

    Chapter  Google Scholar 

  130. Lien, H.-L.; Wilkin, R. T. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere 2005, 59, 377–386.

    Article  Google Scholar 

  131. He, F.; Zhao, D. Y.; Paul, C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 2010, 44, 2360–2370.

    Article  Google Scholar 

  132. Henn, K. W.; Waddill, D. W. Utilization of nanoscale zerovalent iron for source remediation–A case study. Remediation 2006, 57–77.

    Google Scholar 

  133. Dubey, S. P.; Dwivedi, A. D.; Kim, I.-C.; Sillanpaa, M.; Kwon, Y.-N.; Lee, C. Synthesis of graphene–carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chem. Eng. J. 2014, 244, 160–167.

    Article  Google Scholar 

  134. He, J. S.; Siah, T.-S.; Chen, J. P. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water. Water Res. 2014, 56, 88–97.

    Article  Google Scholar 

  135. Xiong, R.; Wang, Y. R.; Zhang, X. X.; Lu, C. H. Facile synthesis of magnetic nanocomposites of cellulose@ultrasmall iron oxide nanoparticles for water treatment. RSC Adv. 2014, 4, 22632–22641.

    Article  Google Scholar 

  136. Saharan, P.; Chaudhary, G. R.; Lata, S.; Mehta, S. K.; Mor, S. Ultra fast effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrason. Sonochem. 2015, 22, 317–325.

    Article  Google Scholar 

  137. Che, H. X.; Yeap, S. P.; Ahmad, A. L.; Lim, J. K. Layerby- layer assemble of iron oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem. Eng. J. 2014, 243, 68–78.

    Article  Google Scholar 

  138. Cao, J.; Li, J. C.; Liu, L.; Xie, A. J.; Li, S. K.; Qiu, L. G.; Yuan, Y. P.; Shen, Y. H. One-pot synthesis of novel Fe3O4/Cu2O/PANI nanocomposites as absorbents in water treatment. J. Mater. Chem. A 2014, 2, 7953.

    Article  Google Scholar 

  139. Bhaumik, M.; Choi, H. J.; McCrindle, R. I.; Maity, A. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: High performance for water treatment applications. J. Colloid Interf. Sci. 2014, 425, 75–82.

    Article  Google Scholar 

  140. Liang, S.; Qi, G. G.; Xiao, K.; Sun, J. Y.; Giannelis, E. P.; Huang, X.; Elimelech, M. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. J. Memb. Sci. 2014, 463, 94–101.

    Article  Google Scholar 

  141. Yu, L.; Peng, X. J.; Ni, F.; Li, J.; Wang, D. S.; Luan, Z. K. Arsenite removal from aqueous solutions by λ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater. 2013, 246–247, 10–17.

    Article  Google Scholar 

  142. Weng, X. L.; Lin, S.; Zhong, Y. H.; Chen, Z. L. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chem. Eng. J. 2013, 229, 27–34.

    Article  Google Scholar 

  143. Chalasani, R.; Vasudevan, S. Cyclodextrin-functionalized Fe3O4@TiO2: Resuable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 2013, 7, 4093–4104.

    Article  Google Scholar 

  144. Chai, L. Y.; Wang, Y. Y.; Zhao, N.; Yang, W. C.; You, X. Y. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res. 2013, 47, 4040–4049.

    Article  Google Scholar 

  145. Wang, H. T.; Lin, K.-Y.; Jing, B. X.; Krylova, G.; Sigmon, G. E.; McGinn, P.; Zhu, Y. X.; Na, C. Z. Removal of oil droplets from contaminated water using magnetic carbon nanotubes. Water Res. 2013, 47, 4198–4205.

    Article  Google Scholar 

  146. Zelmanov, G.; Semiat, R. Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination 2014, 333, 107–117.

    Article  Google Scholar 

  147. Das, S. K.; Khan, M. M. R.; Parandhaman, T.; Laffir, F.; Guha, A. K.; Sekaran, G.; Mandal, A. B. Nano-silica fabricated with silver nanoparticles: Antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 2013, 5, 5549–5560.

    Article  Google Scholar 

  148. Ayati, A.; Ahmadpour, A.; Bamoharram, F. F.; Tanhaei, B.; Manttari, M.; Sillanpaa, M. A review on catlaytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 2014, 107, 163–174.

    Article  Google Scholar 

  149. Qu, X. L.; Alvarez, P. J. J.; Li, Q. L. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946.

    Article  Google Scholar 

  150. Vadahanambi, S.; Lee, S.-H.; Kim, W.-J.; Oh, I.-K. Arsenic removal from contaminated water using three- dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol. 2013, 47, 10510–10517.

    Google Scholar 

  151. Zhang, Z. Y.; Kong, J. L. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 2011, 193, 325–329.

    Article  Google Scholar 

  152. Tang, S. C. N.; Lo, I. M. C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632.

    Article  Google Scholar 

  153. Yang, Z.; Yan, H.; Yang, H.; Li, H. B.; Li, A. M.; Cheng, R. S. Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Res. 2013, 47, 3037–3046.

    Article  Google Scholar 

  154. Kassaee, M. Z.; Motamedi, E.; Mikhak, A.; Rahnemaie, R. Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chem. Eng. J. 2011, 166, 490–495.

    Article  Google Scholar 

  155. Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091.

    Article  Google Scholar 

  156. Hua, M.; Zhang, S. J.; Pan, B. C.; Zhang, W. M.; Lv, L.; Zhang, Q. X. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331.

    Google Scholar 

  157. Auffan, M.; Achouak, W.; Rose, J.; Roncato, M. A.; Chaneac, C.; Waite, D. T.; Masion, A.; Woicik, J. C.; Wiesner, M. R.; Bottero, J. Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008, 42, 6730–6735.

    Article  Google Scholar 

  158. Brunet, L.; Lyon, D. Y.; Hotze, E. M.; Alvarez, P. J. J.; Wiesner, M. R. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 4355–4360.

    Article  Google Scholar 

  159. Li, Q. L.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez, P. J. J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602.

    Article  Google Scholar 

  160. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005, 16, 2346–2353.

    Article  Google Scholar 

  161. Larimer, C.; Ostrowski, N.; Speakman, J.; Nettleship, I. The segregation of silver nanoparticles in low-cost ceramic water filters. Mater. Charact. 2010, 61, 408–412.

    Article  Google Scholar 

  162. Dankovich, T. A.; Gray, D. G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 2011, 45, 1992–1998.

    Article  Google Scholar 

  163. Liga, M. V.; Bryant, E. L.; Colvin, V. L.; Li, Q. L. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 2011, 45, 535–544.

    Article  Google Scholar 

  164. Apalangya, V.; Rangari, V.; Tiimob, B.; Jeelani, S.; Samuel, T. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl. Surf. Sci. 2014, 295, 108–114.

    Article  Google Scholar 

  165. Saifuddin, N.; Nian, C. Y.; Zhan, L. W.; Ning, K. X. Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J. Biochem. 2011, 6, 142–159.

    Article  Google Scholar 

  166. Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641.

    Article  Google Scholar 

  167. Auffan, M.; Rose, J.; Wiesner, M. R.; Bottero, J. Y. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127–1133.

    Article  Google Scholar 

  168. Kang, S.; Mauter, M. S.; Elimelech, M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 2008, 42, 7528–7534.

    Article  Google Scholar 

  169. Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893–6899.

    Article  Google Scholar 

  170. Boverhof, D. R.; David, R. M. Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation. Anal. Bioanal. Chem. 2010, 396, 953–961.

    Article  Google Scholar 

  171. Blaise, C.; Gagne, F.; Ferard, J. F.; Eullaffroy, P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. 2008, 23, 591–598.

    Article  Google Scholar 

  172. Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot- Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6, 14.

    Article  Google Scholar 

  173. Zhang, W.; Rittmann, B.; Chen, Y. S. Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ. Sci. Technol. 2011, 45, 2172–2178.

    Article  Google Scholar 

  174. Yin, L. Y.; Cheng, Y. W.; Espinasse, B.; Colman, B. P.; Auffan, M.; Wiesner, M. R.; Rose, J.; Liu, J.; Bernhardt, E. S. More than the ions: The effects of silver nanopartilces on Lolium multiflorum. Environ. Sci. Technol. 2011, 45, 2360–2367.

    Article  Google Scholar 

  175. Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 2007, 41, 8484–8490.

    Article  Google Scholar 

  176. Hildebrand, H.; Kuhnel, D.; Potthoff, A.; Mackenzie, K.; Springer, A.; Schirmer, K. Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environ. Pollut. 2010, 158, 65–73.

    Article  Google Scholar 

  177. Schultz, A. G.; Boyle, D.; Chamot, D.; Ong, K. J.; Wilkinson, K. J.; McGeer, J. C.; Sunahara, G.; Goss, G. G. Aquatic toxicity of manufactured nanomaterials: Challenges and recommendations for future toxicity testing. Environ. Chem. 2014, 11, 207–226.

    Article  Google Scholar 

  178. Ma, H. B.; Williams, P. L.; Diamond, S. A. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environ. Pollut. 2013, 172, 76–85.

    Article  Google Scholar 

  179. Peulen, T.-O.; Wilkinson, K. J. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 2011, 45, 3367–3373.

    Article  Google Scholar 

  180. Reidy, B.; Haase, A.; Luch, A.; Dawson, K. A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Mater. 2013, 6, 2295–2350.

    Article  Google Scholar 

  181. Praetorius, A.; Scheringer, M.; Hungerbuhler, K. Development of environmental fate models for engineered nanoparticles - A case study of TiO2 nanoparticles in the Rhine River. Environ. Sci. Technol. 2012, 46, 6705–6713.

    Article  Google Scholar 

  182. Lowry, G. V.; Espinasse, B. P.; Badireddy, A. R.; Richardson, C. J.; Reinsch, B. C.; Bryant, L. D.; Bone, A. J.; Deonarine, A.; Chae, S.; Therezien, M. et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, 7027–7036.

    Article  Google Scholar 

  183. Westerhoff, P.; Nowack, B. Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc. Chem. Res. 2013, 46, 844–853.

    Article  Google Scholar 

  184. Gavankar, S.; Suh, S.; Keller, A. F. Life cycle assessment at nanoscale: Review and recommendations. Int. J. Life Cycle Assess. 2012, 17, 295–303.

    Article  Google Scholar 

  185. Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; van den Brink, N.; Nickel, C. Fate and bioavailability of engineered nanoparticles in soils: A review. Crit. Rev. Env. Sci. Technol. 2014, 44, 2720–2764.

    Article  Google Scholar 

  186. Chalew, T. E. A.; Ajmani, G. S.; Huang, H. O.; Schwab, K. J. Evaluating nanoparticle breakthrough during drinking water treatment. Environ. Health Persp. 2013, 121, 1161–1166.

    Google Scholar 

  187. Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 2014, 8, 5022–5031.

    Article  Google Scholar 

  188. Westerhoff, P.; Song, G. X.; Hristovski, K.; Kiser, M. A. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit. 2011, 13, 1195.

    Article  Google Scholar 

  189. Rottman, J.; Sierra-Alvarez, R.; Shadman, F. Real-time monitoring of nanoparticle retention in porous media. Environ. Chem. Lett. 2013, 11, 71–76.

    Article  Google Scholar 

  190. Rahman, T.; Millwater, H.; Shipley, H. J. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Sci. Total Environ. 2014, 499, 402–412.

    Article  Google Scholar 

  191. Wu, N.; Wyart, Y.; Liu, Y.; Rose, J.; Moulin, P. An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment. Environ. Technol. Rev. 2013, 2, 55–70.

    Article  Google Scholar 

  192. Westerhoff, P. K.; Kiser, M. A.; Hristovski, K. Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 2013, 30, 109–117.

    Article  Google Scholar 

  193. Ferreira da Silva, B.; Perez, S.; Gardinalli, P.; Singhal, R. K.; Mozeto, A. A.; Barcelo, D. Analytical chemistry of metallic nanoparticles in natural environments. TrAC-Trend. Anal. Chem. 2011, 30, 528–540.

    Article  Google Scholar 

  194. von der Kammer, F.; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.; Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32–49.

    Article  Google Scholar 

  195. Weinberg, H.; Galyean, A.; Leopold, M. Evaluating engineered nanoparticles in natural waters. TrAC-Trend. Anal. Chem. 2011, 30, 72–83.

    Article  Google Scholar 

  196. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the structure of poly(dopamine). Langmuir 2012, 28, 6428–6435.

    Article  Google Scholar 

  197. Kasemset, S.; Lee, A.; Miller, D. J.; Freeman, B. D.; Sharma, M. M. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J. Memb. Sci. 2013, 425, 208–216.

    Article  Google Scholar 

  198. McCloskey, B. D.; Park, H. B.; Ju, H.; Rowe, B. W.; Miller, D. J.; Chun, B. J.; Kin, K.; Freeman, B. D. Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 2010, 51, 3472–3485.

    Article  Google Scholar 

  199. Miller, D. J.; Araujo, P. A.; Correia, P. B.; Ramsey, M. M.; Kruithof, J. C.; van Loosdrecht, M. C. M.; Freeman, B. D.; Paul, D. R.; Whiteley, M.; Vrouwenvelder, J. S. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Res. 2012, 46, 3737–3753.

    Article  Google Scholar 

  200. McCloskey, B. D.; Park, H. B.; Ju, H.; Rowe, B. W.; Miller, D. J.; Freeman, B. D. A bioinspired fouling-resistant surface modification for water purification membranes. J. Memb. Sci. 2012, 413–414, 82–90.

    Article  Google Scholar 

  201. Tang, Z. H.; Qiu, C. Q.; McCutcheon, J. R.; Yoon, K.; Ma, H. Y.; Fang, D. F.; Lee, E.; Kopp, C.; Hsiao, B. S.; Chu, B. Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J. Polym. Sci. B Polym. Phys. 2009, 47, 2288–2300.

    Article  Google Scholar 

  202. Bui, N.-N.; McCutcheon, J. R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ. Sci. Technol. 2013, 47, 1761–1769.

    Google Scholar 

  203. Huang, L.; Bui, N.-N.; Manickam, S. S.; McCutcheon, J. R. Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym. Sci. B Polym. Phys. 2011, 49, 1734–1744.

    Article  Google Scholar 

  204. Jackson, E. A.; Hillmyer, M. A. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano 2010, 4, 3548–3553.

    Article  Google Scholar 

  205. Phillip, W. A.; O' Neill, B.; Rodwogin, M.; Hillmyer, M. A.; Cussler, E. L. Self-assembled block copolymer thin films as water filtration membranes. ACS App. Mater. Int. 2010, 2, 847–853.

    Article  Google Scholar 

  206. Yeo, J.; Kim, S. Y.; Kim, S.; Ryu, D. Y.; Kim, T.-H.; Park, M. J. Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications. Nanotechnol. 2012, 23, 245703.

    Article  Google Scholar 

  207. Wandera, D.; Himstedt, H. H.; Marroquin, M.; Wickramasinghe, S. R.; Husson, S. M. Modification of ultrafiltration membranes with block copolymer nanolayers for produced water treatment: The roles of polymer chain density and polymerization time on performance. J. Memb. Sci. 2012, 403, 250–260.

    Article  Google Scholar 

  208. Karunakaran, M.; Nunes, S. P.; Qiu, X. Y.; Yu, H. Z.; Peinemann, K.-V. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. J. Memb. Sci. 2014, 453, 471–477.

    Article  Google Scholar 

  209. Marques, D. S.; Vainio, U.; Chaparro, N. M.; Carlo, V. M.; Behzad, A. R.; Pitera, J. W.; Peinemann, K.-V.; Nunes, S. P. Self-assembly in casting solutions of block copolymer membranes. Soft Mat. 2013, 9, 5557–5564.

    Article  Google Scholar 

  210. Nunes, S. P.; Behzad, A. R.; Peinemann, K.-V. Selfassembled block copolymer membranes: From basic research to large scale manufacturing. J. Mater. Res. 2013, 28, 2661–2665.

    Article  Google Scholar 

  211. Dorin, R. M.; Phillip, W. A.; Sai, H.; Werner, J.; Elimelech, M.; Wiesner, U. Designing block copolymer architectures for targeted membrane performance. Polymer 2014, 55, 347–353.

    Article  Google Scholar 

  212. Phillip, W. A.; Dorin, R. M.; Werner, J.; Hoek, E. M. V.; Wiesner, U.; Elimelech, M. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 2011, 11, 2892–2900.

    Article  Google Scholar 

  213. Gu, Y. B.; Dorin, R. M.; Wiesner, U. Asymmetric organicinorganic hybrid membrane formation via block copolymernanoparticle co-assembly. Nano Lett. 2013, 13, 5323–5328.

    Article  Google Scholar 

  214. Hoheisel, T. N.; Hur, K.; Wiesner, U. B. Block copolymernanoparticle hybrid self-assembly. Prog. Polym. Sci. 2015, 40, 3–32.

    Article  Google Scholar 

  215. Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008, 320, 1748–1752.

    Article  Google Scholar 

  216. Bokare, A. D.; Chikate, R. C.; Rode, C. V.; Paknikar, K. M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B 2008, 79, 270–278.

    Article  Google Scholar 

  217. Fang, Z. Q.; Qiu, X. H.; Chen, J. H.; Qiu, X. Q. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism. J. Hazard. Mater. 2011, 185, 958–969.

    Article  Google Scholar 

  218. Cao, J.; Xu, R. F.; Tang, H.; Tang, S. S.; Cao, M. H. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene. Sci. Total Environ. 2011, 409, 2336–2341.

    Article  Google Scholar 

  219. Choi, K.; Lee, W. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II). J. Hazard. Mater. 2012, 211,146–153.

    Article  Google Scholar 

  220. Chun, C. L.; Baer, D. R.; Matson, D. W.; Amonette, J. E.; Penn, R. L. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Environ. Sci. Technol. 2010, 44, 5079–5085.

    Article  Google Scholar 

  221. Joo, S. H.; Feitz, A. J.; Waite, T. D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ. Sci. Technol. 2004, 38, 2242–2247.

    Article  Google Scholar 

  222. Keenan, C. R.; Sedlak, D. L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 6936–6941.

    Article  Google Scholar 

  223. Lee, C.; Keenan, C. R.; Sedlak, D. L. Polyoxometalateenhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 2008, 42, 4921–4926.

    Article  Google Scholar 

  224. Hooshyar, Z.; Bardajee, G. R.; Ghayeb, Y. Sonication enhanced removal of nickel and cobalt ions from polluted water using an iron based sorbent. J. Chem. 2012, 2013, 786954.

    Google Scholar 

  225. Hug, S. J.; Leupin, O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734–2742.

    Article  Google Scholar 

  226. Liu, T. Z.; Tsang, D. C. W.; Lo, I. M. C. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: Iron dissolution and humic acid adsorption. Environ. Sci. Technol. 2008, 42, 2092–2098.

    Article  Google Scholar 

  227. Armon, R.; Weltch-Cohen, G.; Bettane, P. Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Water Sci. Technol. Water Supp. 2004, 4, 7–14.

    Google Scholar 

  228. Antoniou, M. G.; Nicolaou, P. A.; Shoemaker, J. A.; de la Cruz, A. A.; Dionysiou, D. D. Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR. Appl. Catal. B Env. 2009, 91, 165–173.

    Article  Google Scholar 

  229. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25- graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

    Article  Google Scholar 

  230. Jain, S.; Yamgar, R.; Jayaram, R. V. Photolytic and photocatalytic degradation of atrazine in the presence of activated carbon. Chem. Eng. J. 2009, 148, 342–347.

    Article  Google Scholar 

  231. Žabar, R.; Komel, T.; Fabjan, J.; Kralj, M. B.; Trebše, P. Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: Imidacloprid, thiamethoxam and clothianidin. Chemosphere 2012, 89, 293–301.

    Article  Google Scholar 

  232. Tu, W. G.; Zhou, Y.; Zou, Z. G. Versatile graphenepromoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Func. Mater. 2013, 23, 4996–5008.

    Article  Google Scholar 

  233. Bae, E. Y.; Choi, W. Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol. 2003, 37, 147–152.

    Article  Google Scholar 

  234. Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

    Article  Google Scholar 

  235. Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J. A.; Bechstein, R.; Kiely, C. J.; Hutchings, G. J. et al. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 2012, 6, 6284–6292.

    Article  Google Scholar 

  236. Zhang, W. J.; Zhou, C. J.; Zhou, W. C.; Lei, A. H.; Zhang, Q. L.; Wan, Q.; Zou, B. S. Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull. Environ. Contam. Toxicol. 2011, 87, 86–90.

    Article  Google Scholar 

  237. Ion, A. C.; Alpatova, A.; Ion, I.; Culetu, A. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Mater. Sci. Eng. B. 2011, 176, 588–595.

    Article  Google Scholar 

  238. Lu, K.; Zhao, G. X.; Wang, X. K. A brief review of graphene-based material synthesis and its application in environmental pollution management. Chinese Sci. Bull. 2012, 57, 1223–1234.

    Article  Google Scholar 

  239. Zhao, G. X.; Li, J. X.; Ren, X. M.; Chen, C. L.; Wang, X. K. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454–10462.

    Article  Google Scholar 

  240. Sun, Y. B.; Wang, Q.; Chen, C. L.; Tan, X. L.; Wang, X. K. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027.

    Article  Google Scholar 

  241. Hu, M.; Mi, B. X. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 2014, 469, 80–87.

    Article  Google Scholar 

  242. O’Hern, S. C.; Boutilier, M. S. H.; Idrobo, J. C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14, 1234–1241.

    Article  Google Scholar 

  243. Yeh, C.-N.; Raidongia, K.; Shao, J. J.; Yang, Q.-H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nature Chem. 2015, 7, 166–170.

    Article  Google Scholar 

  244. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through Helium-leak-tight graphen-based membranes. Science 2012, 335, 442–444.

    Article  Google Scholar 

  245. Greenlee, L. F.; Hooker, S. A. Development of stabilized zero valent iron nanoparticles. Desalin. Water Treat. 2012, 37, 114–121.

    Article  Google Scholar 

  246. Greenlee, L. F.; Torrey, J. D.; Amaro, R. L.; Shaw, J. M. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Environ. Sci. Technol. 2012, 46, 12913–12920.

    Article  Google Scholar 

  247. Bhattacharyya, D. Functionalized membranes and environmental applications. Clean Technol. Envr. 2007, 9, 81–83.

    Article  Google Scholar 

  248. Pendergast, M. M. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 2013, 308, 180–185.

    Article  Google Scholar 

  249. Pendergast, M. M.; Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971.

    Article  Google Scholar 

  250. Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltratrion membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

    Article  Google Scholar 

  251. Bedford, N. M.; Pelaez, M.; Han, C. S.; Dionysiou, D. D.; Steckl, A. J. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin- LR. J. Mater. Chem. 2012, 22, 12666–12674.

    Article  Google Scholar 

  252. Byun, S.; Davies, S. H.; Alpatova, A. L.; Corneal, L. M.; Baumann, M. J.; Tarabara, V. V.; Masten, S. J. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: Comparison of Ti, Fe and Mn oxide coated membranes for water quality. Water Res. 2011, 45, 163–170.

    Article  Google Scholar 

  253. Choi, J. H.; Jegal, J.; Kim, W. N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 2006, 284, 406–415.

    Article  Google Scholar 

  254. Dotzauer, D. A.; Bhattacharjee, S.; Wen, Y.; Bruening, M. L. Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds. Langmuir 2009, 25, 1865–1871.

    Article  Google Scholar 

  255. Gui, M. H.; Smuleac, V.; Ormsbee, L. E.; Sedlak, D. L.; Bhattacharyya, D. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water. J. Nanopart. Res. 2012, 14, 861.

    Article  Google Scholar 

  256. Lee, H. S.; Im, S. J.; Kim, J. H.; Kim, H. J.; Kim, J. P.; Min, B. R. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 2008, 219, 48–56.

    Article  Google Scholar 

  257. Lind, M. L.; Suk, D. E.; Nguyen, T. V.; Hoek, E. M. V. Tailoring the structure of thin film nanocomposite membranes to achieve seawater ROmembrane performance. Environ. Sci. Technol. 2010, 44, 8230–8235.

    Article  Google Scholar 

  258. Liang, S.; Xiao, K.; Mo, Y. H.; Huang, X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Memb. Sci. 2012, 394, 184–192.

    Article  Google Scholar 

  259. Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Memb. Sci. 2011, 379, 131–137.

    Article  Google Scholar 

  260. Taurozzi, J. S.; Arul, H.; Bosak, V. Z.; Burban, A. F.; Voice, T. C.; Bruening, M. L.; Tarabara, V. V. Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities. J. Memb. Sci. 2008, 325, 58–68.

    Article  Google Scholar 

  261. Xu, J.; Dozier, A.; Bhattacharyya, D. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J. Nanopart. Res. 2005, 7, 449–467.

    Article  Google Scholar 

  262. Yang, Y. N.; Zhang, H. X.; Wang, P.; Zheng, Q. Z.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of SF UFmembrane. J. Memb. Sci. 2007, 288, 231–238.

    Article  Google Scholar 

  263. Zhu, C. Q.; Li, H.; Zeng, X. C.; Wang, E. G.; Meng, S. Quantized water transport: Ideal desalination through graphyne-4 membrane. Sci. Rep. 2013, 3, 3163.

    Google Scholar 

  264. Guillot, B. A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 2002, 101, 219–260.

    Article  Google Scholar 

  265. Yoo, S.; Zeng, X. C.; Xantheas, S. S. On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew-Burke- Ernzerhof and Becke-Lee-Yang-Parr functionals. J. Chem. Phys. 2009, 130, 221102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Meng or Lauren F. Greenlee.

Additional information

Contribution of NIST, an agency of the US government; not subject to copyright in the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, S., Greenlee, L.F., Shen, Y.R. et al. Basic science of water: Challenges and current status towards a molecular picture. Nano Res. 8, 3085–3110 (2015). https://doi.org/10.1007/s12274-015-0822-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0822-y

Keywords

Navigation