Skip to main content
Log in

Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries attract much interest as energy storage devices for their low cost, high specific capacity, and energy density. However, the insulating properties of sulfur and high solubility of lithium polysulfides decrease the utilization of active materials by the battery resulting in poor cycling performance. Herein, we design a multifunctional carbon-nanotube paper/titanium-dioxide barrier which effectively reduces active material loss and suppresses the diffusion of lithium polysulfides to the anode, thereby improving the cycling stability of lithium-sulfur batteries. Using this barrier, an activated carbon/sulfur cathode with 70% sulfur content delivers stable cycling performance and high Coulombic efficiency (∼99%) over 250 cycles at a current rate of 0.5 C. The improved electrochemical performance is attributed to the synergistic effects of the carbon nanotube paper and titanium dioxide, involving the physical barrier, chemical adsorption from the binding formation of Ti-S and S-O, and other interactions unique to the titanium dioxide and sulfur species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  2. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  3. Xu, G. Y.; Ding, B.; Pan, J.; Nie, P.; Shen, L. F.; Zhang, X. G. High performance lithium–sulfur batteries: Advances and challenges. J. Mater. Chem. A 2014, 2, 12662–12676.

    Article  Google Scholar 

  4. Wang, J. L.; Yao, Z. D.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl-ß-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 2013, 23, 1194–1201.

    Article  Google Scholar 

  5. Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, DOI: 10.1002/ aenm.201301761.

  6. Niu, J. J.; Kushima, A.; Li, M. D.; Wang, Z. Q.; Li, W. B.; Wang, C.; Li, J. Scalable synthesis of a sulfur nanosponge cathode for a lithium–sulfur battery with improved cyclability. J. Mater. Chem. A 2014, 2, 19788–19796.

    Article  Google Scholar 

  7. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  8. Xu, G.; Ding, B.; Nie, P.; Shen, L.; Dou, H.; Zhang, X. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2013, 6, 194–199.

    Article  Google Scholar 

  9. Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.

    Google Scholar 

  10. Gu, X. X.; Wang, Y. Z.; Lai, C.; Qiu, J. X.; Li, S.; Hou, Y. L.; Martens, W.; Mahmood, N.; Zhang, S. Q. Microporous bamboo biochar for lithium–sulfur batteries. Nano Res. 2015, 8, 129–139.

    Article  Google Scholar 

  11. Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969–A1976.

    Article  Google Scholar 

  12. Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

    Article  Google Scholar 

  13. Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

    Article  Google Scholar 

  14. Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.

    Article  Google Scholar 

  15. Zhou, W. D.; Yu, Y. C.; Chen, H.; Di Salvo, F. J.; Abruña, H. D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

    Article  Google Scholar 

  16. Li, W. Y.; Zhang, Q. F.; Zheng, G. Y.; Seh, Z. W.; Yao, H. B.; Cui, Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 2013, 13, 5534–5540.

    Article  Google Scholar 

  17. Evers, S.; Yim, T.; Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J. Phys. Chem. C 2012, 116, 19653–19658.

    Article  Google Scholar 

  18. Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K.; Cui, Y. Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

    Article  Google Scholar 

  19. Zhou, G. M.; Zhao, Y. B.; Zu, C. X.; Manthiram, A. Freestanding TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 2015, 12, 240–249.

    Article  Google Scholar 

  20. Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; Mc Dowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur–TiO2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  Google Scholar 

  21. Li, J. Y.; Ding, B.; Xu, G. Y.; Hou, L. R.; Zhang, X. G.; Yuan, C. Z. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li–S batteries. Nanoscale 2013, 5, 5743–5746.

    Article  Google Scholar 

  22. Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 2013, 1, 4490–4496.

    Article  Google Scholar 

  23. Demir-Cakan, R.; Morcrette, M.; Gangulibabu; Gueguen, A.; Dedryvere, R.; Tarascon, J. M. Li–S batteries: Simple approaches for superior performance. Energy Environ. Sci. 2013, 6, 176–182.

    Article  Google Scholar 

  24. Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopaminecoated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250.

    Article  Google Scholar 

  25. Gao, J.; Abruña, H. D. Key parameters governing the energy density of rechargeable Li/S batteries. J. Phys. Chem. Lett. 2014, 5, 882–885.

    Article  Google Scholar 

  26. Zu, C. X.; Su, Y. S.; Fu, Y. Z.; Manthiram, A. Improved lithium–sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys. 2013, 15, 2291–2297.

    Article  Google Scholar 

  27. Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Comm. 2012, 48, 8817–8819.

    Article  Google Scholar 

  28. Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.

    Article  Google Scholar 

  29. Xu, G. Y.; Ding, B.; Nie, P.; Shen, L. F.; Wang, J.; Zhang, X. G. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Chem. Eur. J. 2013, 19, 12306–12312.

    Article  Google Scholar 

  30. Hu, Z. H.; Srinivasan, M. P.; Ni, Y. Preparation of mesoporous high-surface-area activated carbon. Adv. Mater. 2000, 12, 62–65.

    Article  Google Scholar 

  31. Miao, L. X.; Wang, W. K.; Yuan, K.; Yang, Y. S.; Wang, A. B. A lithium–sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material. Chem. Comm. 2014, 50, 13231.

    Article  Google Scholar 

  32. Xu, R.; Belharouak, I.; Li, J. C. M.; Zhang, X. F.; Bloom, I.; Bareño, J. Role of polysulfides in self-healing lithium–sulfur batteries. Adv. Energy Mater. 2013, 3, 833–838.

    Article  Google Scholar 

  33. Lee, D. J.; Agostini, M.; Park, J. W.; Sun, Y. K.; Hassoun, J.; Scrosati, B. Progress in lithium–sulfur batteries: The effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. ChemSusChem 2013, 6, 2245–2248.

    Article  Google Scholar 

  34. Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. Highrate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.

    Article  Google Scholar 

  35. Meng, F. C.; Zhang, X. H.; Li, R.; Zhao, J. N.; Xuan, X. H.; Wang, X. B.; Zou, J. Y.; Li, Q. W. Electro-induced mechanical and thermal responses of carbon nanotube fibers. Adv. Mater. 2014, 26, 2480–2485.

    Article  Google Scholar 

  36. Chen, L. F.; Yu, Z. Y.; Ma, X.; Li, Z. Y.; Yu, S. H. In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors. Nano Energy 2014, 9, 345–354.

    Article  Google Scholar 

  37. Chen, L. F.; Yu, Z. Y.; Wang, J. J.; Li, Q. X.; Tan, Z. Q.; Zhu, Y. W.; Yu, S. H. Metal-like fluorine-doped ß-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 2015, 11, 119–128.

    Article  Google Scholar 

  38. Juang, R. S.; Hsieh, C. T.; Chen, P. A.; Chen, Y. F. Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J. Power Sources 2015, 286, 526–533.

    Article  Google Scholar 

  39. Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598.

    Article  Google Scholar 

  40. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for highpower lithium–sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904–5908.

    Article  Google Scholar 

  41. Zu, C. X.; Manthiram, A. Hydroxylated graphene–sulfur nanocomposites for high-rate lithium–sulfur batteries. Adv. Energy Mater. 2013, 3, 1008–1012.

    Article  Google Scholar 

  42. Lu, S. T.; Cheng, Y. W.; Wu, X. H.; Liu, J. Significantly improved long-cycle stability in high-rate Li–S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett. 2013, 13, 2485–2489.

    Article  Google Scholar 

  43. Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surfaceenhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 2014, 5, 4759.

    Article  Google Scholar 

  44. Su, Y. S.; Fu, Y. Z.; Guo, B. K.; Dai, S.; Manthiram, A. Fast, reversible lithium storage with a sulfur/long-chainpolysulfide redox couple. Chem. Eur. J. 2013, 19, 8621–8626.

    Article  Google Scholar 

  45. Seh, Z. W.; Yu, J. H.; Li, W.; Hsu, P. C.; Wang, H.; Sun, Y.; Yao, H.; Zhang, Q.; Cui, Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 2014, 5, 5017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Yan or Xiaogang Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Yuan, J., Tao, X. et al. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 8, 3066–3074 (2015). https://doi.org/10.1007/s12274-015-0812-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0812-0

Keywords

Navigation