Biological imaging without autofluorescence in the second near-infrared region


Fluorescence imaging is capable of acquiring anatomical and functional information with high spatial and temporal resolution. This imaging technique has been indispensable in biological research and disease detection/diagnosis. Imaging in the visible and to a lesser degree, in the near-infrared (NIR) regions below 900 nm, suffers from autofluorescence arising from endogenous fluorescent molecules in biological tissues. This autofluorescence interferes with fluorescent molecules of interest, causing a high background and low detection sensitivity. Here, we report that fluorescence imaging in the 1,500–1,700-nm region (termed “NIR-IIb”) under 808-nm excitation results in nearly zero tissue autofluorescence, allowing for background-free imaging of fluorescent species in otherwise notoriously autofluorescent biological tissues, including liver. Imaging of the intrinsic fluorescence of individual fluorophores, such as a single carbon nanotube, can be readily achieved with high sensitivity and without autofluorescence background in mouse liver within the 1,500–1,700-nm wavelength region.

This is a preview of subscription content, log in to check access.


  1. [1]

    Ntziachristos, V.; Chance, B. Breast imaging technology: Probing physiology and molecular function using optical imaging-applications to breast cancer. Breast Cancer Res. 2001, 3, 41–46.

    Article  Google Scholar 

  2. [2]

    He, X. X.; Gao, J. H.; Gambhir, S. S.; Cheng, Z. Nearinfrared fluorescent nanoprobes for cancer molecular imaging: Status and challenges. Trends Mol. Med. 2010, 16, 574–583.

    Article  Google Scholar 

  3. [3]

    Shang, L.; Dörlich, R. M.; Trouillet, V.; Bruns, M.; Nienhaus, G. U. Ultrasmall fluorescent silver nanoclusters: Protein adsorption and its effects on cellular responses. Nano Res. 2012, 5, 531–542.

    Article  Google Scholar 

  4. [4]

    Le Guével, X.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione: A promising fluorescent label for bioimaging. Nano Res. 2012, 5, 379–387.

    Article  Google Scholar 

  5. [5]

    Guo, W. S.; Yang, W. T.; Wang, Y.; Sun, X. L.; Liu, Z. Y.; Zhang, B. B.; Chang, J.; Chen, X.Y. Color-tunable Gd-Zn- Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res. 2014, 7, 1581–1591.

    Article  Google Scholar 

  6. [6]

    Sevick-Muraca, E. M. Translation of near-infrared fluorescence imaging technologies: Emerging clinical applications. Annu. Rev. Med. 2012, 63, 217–231.

    Article  Google Scholar 

  7. [7]

    Baschong, W.; Suetterlin, R.; Laeng, R. H. Control of autofluorescence of archival formaldehyde-fixed, paraffinembedded tissue in confocal laser scanning microscopy (CLSM). J. Histochem. Cytochem. 2001, 49, 1565–1571.

    Article  Google Scholar 

  8. [8]

    Niku, M.; Pessa-Morikawa, T.; Taponen, J.; Iivanainen, A. Direct observation of hematopoietic progenitor chimerism in fetal freemartin cattle. BMC Vet. Res. 2007, 3, 29.

  9. [9]

    Sun, Y.; Yu, H.; Zheng, D.; Cao, Q.; Wang, Y.; Harris, D.; Wang, Y. P. Sudan black B reduces autofluorescence in murine renal tissue. Arch. Pathol. Lab. Med. 2011, 135, 1335–1342.

    Article  Google Scholar 

  10. [10]

    Potter, K. A.; Simon, J. S.; Velagapudi, B.; Capadona, J. R. Reduction of autofluorescence at the microelectrode–cortical tissue interface improves antibody detection. J. Neurosci. Methods 2012, 203, 96–105.

    Article  Google Scholar 

  11. [11]

    Schnell, S. A.; Staines, W. A.; Wessendorf, M. W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J. Histochem. Cytochem. 1999, 47, 719–730.

    Article  Google Scholar 

  12. [12]

    Masella, B. D.; Williams, D. R.; Fischer, W.; Rossi, E. A.; Hunter, J. J. Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure. Invest. Ophthalmol. Visual Sci. 2014, IOVS-13-12562.

    Google Scholar 

  13. [13]

    Neumann, M.; Gabel, D. Simple method for reduction of autofluorescence in fluorescence microscopy. J. Histochem. Cytochem. 2002, 50, 437–439.

    Article  Google Scholar 

  14. [14]

    Viegas, M. S.; Martins, T. C.; Seco, F.; Do Carmo, A. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur. J. Histochem. 2007, 51, 59–66.

    Google Scholar 

  15. [15]

    Diao, S.; Hong, G. S.; Robinson, J. T.; Jiao, L. Y.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Chirality enriched (12, 1) and (11, 3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 2012, 134, 16971–16974.

    Article  Google Scholar 

  16. [16]

    Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014. 8, 723–730.

    Article  Google Scholar 

  17. [17]

    Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 2012, 51, 9818–9821.

    Article  Google Scholar 

  18. [18]

    Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 2014, 5. 4206.

  19. [19]

    Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4. 2199.

  20. [20]

    Tsukasaki, Y.; Morimatsu, M.; Nishimura, G.; Sakata, T.; Yasuda, H.; Komatsuzaki, A.; Watanabe, T. M.; Jin, T. Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window. RSC Adv. 2014, 4, 41164–41171.

    Article  Google Scholar 

  21. [21]

    Yi, H. J.; Ghosh, D.; Ham, M.-H.; Qi, J. F.; Barone, P. W.; Strano, M. S.; Belcher, A. M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012, 12, 1176–1183.

    Article  Google Scholar 

  22. [22]

    Tao, Z. M.; Hong, G. S.; Shinji, C.; Chen, C. X.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y. P.; Dai, H. J. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1,000 nm. Angew. Chem. Int. Ed. 2013. 52, 13002–13006.

    Article  Google Scholar 

  23. [23]

    Bashkatov, A. N.; Genina, E. A.; Kochubey, V. I.; Tuchin, V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2,000 nm. J. Phys. D: Appl. Phys. 2005, 38, 2543–2555.

    Article  Google Scholar 

  24. [24]

    Gu, L.; Hall, D. J.; Qin, Z. T.; Anglin, E.; Joo, J.; Mooney, D. J.; Howell, S. B.; Sailor, M. J. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 2013, 4, 3326.

  25. [25]

    Diao, S.; Blackburn, J. L.; Hong, G. S.; Antaris, A. L.; Chang, J. L.; Wu, J. Z.; Zhang, B.; Kuo, C. J.; Dai, H. J. Fluorescence imaging in vivo up to 1,700 nm. arXiv preprint arXiv:1502.02775 2015.

    Google Scholar 

  26. [26]

    Priceton Instruments. 2D-OMA V InGaAs camera user manual.

  27. [27]

    Villa, I.; Vedda, A.; Cantarelli, I. X.; Pedroni, M.; Piccinelli, F.; Bettinelli, M.; Speghini, A.; Quintanilla, M.; Vetrone, F.; Rocha, U. et al. 1.3 µm emitting SrF2: Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 2015, 8, 1–17.

    Article  Google Scholar 

  28. [28]

    Pukelsheim, F. The three sigma rule. Amer. Statist. 1994, 48, 88–91.

    Google Scholar 

  29. [29]

    Abdo, Z.; Schüette, U. M. E.; Bent, S. J.; Williams, C. J.; Forney, L. J.; Joyce, P. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 2006, 8, 929–938.

    Article  Google Scholar 

  30. [30]

    Shrivastava, A.; Gupta, V. B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25.

    Article  Google Scholar 

  31. [31]

    Dill, K.; Montgomery, D. D.; Ghindilis, A. L.; Schwarzkopf, K. R.; Ragsdale, S. R.; Oleinikov, A. V. Immunoassays based on electrochemical detection using microelectrode arrays. Biosens. Bioelectron. 2004, 20, 736–742.

    Article  Google Scholar 

  32. [32]

    Hatami, S.; Würth, C.; Kaiser, M.; Leubner, S.; Gabriel, S.; Bahrig, L.; Lesnyak, V.; Pauli, J.; Gaponik, N.; Eychmüller, A. et al. Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1–x Hgx Te and PbS quantum dots–methodand material-inherent challenges. Nanoscale 2015, 7, 133–143.

    Article  Google Scholar 

  33. [33]

    Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

    Article  Google Scholar 

  34. [34]

    Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS nano 2013, 7, 2231–2239.

    Article  Google Scholar 

  35. [35]

    Liu, Z.; Davis, C.; Cai, W. B.; He, L. N.; Chen, X. Y.; Dai, H. J. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. 2008, 105, 1410–1415.

    Article  Google Scholar 

  36. [36]

    Hong, G. S.; Wu, J. Z.; Robinson, J. T.; Wang, H. L.; Zhang, B.; Dai, H. J. Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nat. Commun. 2012, 3, 700.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hongjie Dai.

Additional information

These authors contributed to the work equally.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diao, S., Hong, G., Antaris, A.L. et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8, 3027–3034 (2015).

Download citation


  • fluorescence imaging
  • second near-infrared
  • nanotechnology
  • autofluorescence