Nano Research

, Volume 8, Issue 9, pp 2963–2969 | Cite as

Linear magnetoresistance versus weak antilocalization effects in Bi2Te3

Research Article

Abstract

In chalcogenide topological insulator materials, two types of magnetoresistance (MR) effects are widely discussed: a sharp MR dip around zero magnetic field, associated with the weak antilocalization (WAL) effect, and a linear MR (LMR) effect that generally persists to high fields and high temperatures. We have studied the MR of thin films of the topological insulator Bi2Te3 from the metallic to semiconducting transport regime. In the metallic samples, the WAL is difficult to identify owing to the low magnitude of the WAL compared to the samples’ conductivity. Furthermore, the sharp WAL dip in the MR is clearly present in samples with a higher resistivity. To correctly account for the low-field MR with the quantitative theory of the WAL according to the Hikami–Larkin–Nagaoka (HLN) model, we find that the classical (linear) MR effect should be taken into account in combination with the WAL quantum correction. Otherwise, the WAL fitting alone yields an unrealistically large coefficient α in the HLN analysis. This work clarifies the WAL and LMR as two distinct effects and offers an explanation for the overly large α in the WAL analysis of topological insulators in some studies.

Keywords

linear magnetoresistance weak antilocalization Bi2Te3 films topological insulators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett., 2007, 98 106803.CrossRefGoogle Scholar
  2. [2]
    Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5 438–442.CrossRefGoogle Scholar
  3. [3]
    Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulatorclass with a single Dirac cone on the surface. Nat. Phys., 2009, 5 398–402.CrossRefGoogle Scholar
  4. [4]
    Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator Bi2Te3. Science, 2009, 325 178–181.CrossRefGoogle Scholar
  5. [5]
    McCann, E.; Kechedzhi, K.; Fal’ko, V. I.; Suzuura, H.; Ando, T.; Altshuler. B. L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett., 2006, 97 146805.CrossRefGoogle Scholar
  6. [6]
    Tkachov, G.; Hankiewicz, E. M. Weak antilocalization in HgTe quantum wells and topological surface states: Massive versus massless Dirac fermions. Phys. Rev. B, 2011, 84 035444.Google Scholar
  7. [7]
    Lu, H. Z.; Shen, S. Q. Weak localization and weak antilocalization in topological insulators. Proc. SPIE 9167, Spintronics VII 2014, 91672E.Google Scholar
  8. [8]
    Chen, J.; Qin, H. J.; Yang, F.; Liu, J.; Guan, T.; Qu, F. M.; Zhang, G. H.; Shi, J. R.; Xie, X. C.; Yang, C. L. et al. Gatevoltage control of chemical potential and weak antilocalization in Bi2Se3. Phys. Rev. Lett., 2010, 105 176602.CrossRefGoogle Scholar
  9. [9]
    Steinberg, H.; Laloë, J. B.; Fatemi, V.; Moodera, J. S.; Jarillo-Herrero, P. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B, 2011, 84 233101.Google Scholar
  10. [10]
    Checkelsky, J. G.; Hor, Y. S.; Cava, R. J.; Ong, N. P. Bulk band gap and surface state conduction observed in voltagetuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett., 2011, 106 196801.Google Scholar
  11. [11]
    Liu, M.; Chang, C. Z.; Zhang, Z.; Zhang, Y.; Ruan, W.; He, K.; Wang, L.; Chen, X.; Jia, J. F.; Zhang, S. C. et al. Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two-dimensional limit. Phys. Rev. B, 2011, 83 165440.CrossRefGoogle Scholar
  12. [12]
    Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 066803.CrossRefGoogle Scholar
  13. [13]
    Matsuo, S.; Koyama, T.; Shimamura, K.; Arakawa, T.; Nishihara, Y.; Chiba, D.; Kobayashi, K.; Ono, T.; Chang, C. Z.; He, K. et al. Weak antilocalization and conductance fluctuation in a submicrometer-sized wire of epitaxial Bi2Se3. Phys. Rev. B, 2012, 85 075440.Google Scholar
  14. [14]
    Takagaki, Y.; Jenichen, B.; Jahn, U.; Ramsteiner, M.; Friedland, K. J. Weak antilocalization and electron-electron interaction effects in Cu-doped Bi2Se3 films. Phys. Rev. B, 2012, 85 115314.CrossRefGoogle Scholar
  15. [15]
    He, H. T.; Wang, G.; Zhang, T.; Sou, I. K.; Wong, G. K. L.; Wang, J. N.; Lu, H. Z.; Shen, S. Q.; Zhang, F. C. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett., 2011, 106 166805.Google Scholar
  16. [16]
    Cha, J. J.; Kong, D.; Hong, S. S.; Analytis, J. G.; Lai, K.; Cui, Y. Weak antilocalization in Bi2(SexTe1–x)3 nanoribbons and nanoplates. Nano Lett., 2012, 12 1107–1111.CrossRefGoogle Scholar
  17. [17]
    Wang, Z. H.; Qiu, Richard L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1–xSex)3 nanoribbons. ACS Nano, 2013, 7 2126–2131.CrossRefGoogle Scholar
  18. [18]
    Chiu, S. P.; Lin, J. J. Weak antilocalization in topological insulator Bi2Te3 microflakes. Phys. Rev. B, 2013, 87 035122.Google Scholar
  19. [19]
    Tang, H.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Twodimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano, 2011, 5 7510–7516.CrossRefGoogle Scholar
  20. [20]
    Qu, D. X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Quantum oscillations and hallanomaly of surface states in the topological insulator Bi2Te3. Science, 2010, 239 821–824.CrossRefGoogle Scholar
  21. [21]
    He, H. T.; Li, B. K.; Liu, H. C.; Guo, X.; Wang, Z. Y.; Xie, M. H.; Wang, J. N. High-field linear magneto-resistance in topological insulator Bi2Se3 thin films. Appl. Phys. Lett. 2012,100, 032105.Google Scholar
  22. [22]
    Wang, X. L.; Du, Y.; Dou, S. X.; Zhang, C. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett., 2012, 108 266806.Google Scholar
  23. [23]
    Zhang, S. X.; McDonald, R. D.; Shekhter, A.; Bi, Z. X.; Li, Y.; Jia, Q. X.; Picraux, S. T. Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films. Appl. Phys. Lett., 2012, 101 202403.Google Scholar
  24. [24]
    Yan, Y.; Wang, L. X.; Yu, D. P.; Liao, Z. M. Large magnetoresistance in high mobility topological insulator Bi2Se3. Appl. Phys. Lett., 2013, 103 033106.Google Scholar
  25. [25]
    Gao, B. F.; Gehring, P.; Burghard, M.; Kern, K. Gatecontrolled linear magnetoresistance in thin Bi2Se3 sheets. Appl. Phys. Lett., 2012, 100 212402.Google Scholar
  26. [26]
    Assaf, B. A.; Cardinal, T.; Wei, P.; Katmis, F.; Moodera, J. S.; Heiman, D. Linear magnetoresistance in topological insulator thin films: Quantum phasecoherence effects at high temperatures. Appl. Phys. Lett. 2013, 102, 012102.CrossRefGoogle Scholar
  27. [27]
    Tian, J. F.; Chang, C. Z.; Cao, H. L.; He, K.; Ma, X. C.; Xue, Q. K.; Chen, Y. P. Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate-tunable bulk and surface conduction. Sci. Rep., 2014, 4 4859.Google Scholar
  28. [28]
    Abrikosov, A. A. Quantum linear magnetoresistance. Europhys. Lett., 2000, 49 789.Google Scholar
  29. [29]
    Parish, M. M.; Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature, 2003, 426 162–165.CrossRefGoogle Scholar
  30. [30]
    Wang, C. M.; Lei, X. L. Linear magnetoresistance on the topological surface. Phys. Rev. B, 2012, 86 035442.Google Scholar
  31. [31]
    Wang, Z. H.; Yang, L.; Li, S. J.; Zhao, X. T.; Wang, H. L.; Zhang, Z. D.; Gao, X. P. A. Granularity controlled nonsaturating linear magneto-resistance in topological insulator Bi2Te3 films. Nano Lett., 2014, 14 6510–6514.CrossRefGoogle Scholar
  32. [32]
    Xu, R.; Husmann, A.; Rosenbaum, T. F.; Saboungi, M. L.; Enderbya, J. E.; Littlewood, P. B. Large magnetoresistance innon-magnetic silverchalcogenides. Nature, 1997, 390 57–60.CrossRefGoogle Scholar
  33. [33]
    Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 1980, 63 707–710.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.Department of PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations