Abstract
We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag+. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.
Similar content being viewed by others
References
Huang, X. N.; Huang, G.; Zhang, S. R.; Sagiyama, K.; Togao, O.; Ma, X. P.; Wang, Y. G.; Li, Y.; Soesbe, T. C.; Sumer, B. D. et al. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew. Chem., Int. Ed., 2013, 52 8074–8078.
Wilson, R.; Cossins, A. R.; Spiller, D. G. Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem., Int. Ed., 2006, 45 6104–6017.
Finkel, N. H.; Lou, X. H.; Wang, C. Y.; He, L. Barcoding the microworld. Anal. Chem., 2004, 76 352A–359A.
Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantumdot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 2001, 19 631–635.
Pregibon, D. C.; Toner, M.; Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science, 2007, 315 1393–1396.
Gershon, D. Microarray technology: An array of opportunities. Nature, 2002, 416 885–891.
Nicewarner-Peña, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Peña, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes. Science, 2001, 294 137–141.
Birtwell, S.; Morgan, H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol., 2009, 1 345–362.
Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 2008, 37 885–897.
Zhang, Y.; Wang, H.; Nie, J. F.; Zhou, H.; Shen, G. L.; Yu, R. Q. Mussel-inspired fabrication of encoded polymer films for electrochemical identification. Electrochem. Commun., 2009, 11 1936–1939.
Stoermer, R. L.; Cederquist, K. B.; McFarland, S. K.; Sha, M. Y.; Penn, S. G.; Keating, C. D. Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. J. Am. Chem. Soc., 2006, 128 16892–16903.
Qin, L. D.; Banholzer, M. J.; Millstone, J. E.; Mirkin, C. A. Nanodisk codes. Nano Lett., 2007, 7 3849–3853.
Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins. Science, 2003, 301 1884–1886.
Tok, J. B.-H.; Chuang, F. Y. S.; Kao, M. C.; Rose, K. A.; Pannu, S. S.; Sha, M. Y.; Chakarova, G.; Penn, S. G.; Dougherty, G. M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem., Int. Ed., 2006, 45 6900–6904.
Eastman, P. S.; Ruan, W. M.; Doctolero, M.; Nuttall, R.; de Feo, G.; Park, J. S.; Chu, J. S. F.; Cooke, P.; Gray, J. W.; Li, S. et al. Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett., 2006, 6 1059–1064.
Wang, J. Barcoded metal nanowires. J. Mater. Chem., 2008, 18 4017–4020.
Zhao, Y. J.; Shum, H. C.; Chen, H. S.; Adams, L. L. A.; Gu, Z. Z.; Weitz, D. A. Microfluidic generation of multifunctional quantum dot barcode particles. J. Am. Chem. Soc., 2011, 133 8790–8793.
Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth. J. Am. Chem. Soc., 2008, 130 2940–2941.
Rauf, S.; Glidle, A.; Cooper, J. M. Production of quantum dot barcodes using biological self-assembly. Adv. Mater., 2009, 21 4020–4024.
Battersby, B. J.; Bryant, D.; Meutermans, W.; Matthews, D.; Smythe, M. L.; Trau, M. Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc., 2000, 122 2138–2139.
Kuang, M.; Wang, D. Y.; Bao, H. B.; Gao, M. Y.; Mö hwald, H.; Jiang, M. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater., 2005, 17 267–270.
Dejneka, M. J.; Streltsov, A.; Pal, S.; Frutos, A. G.; Powell, C. L.; Yost, K.; Yuen, P. K.; Müller, U.; Lahiri, J. Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. USA, 2003, 100 389–393.
Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hardtemplate synthetic methods. Angew. Chem., Int. Ed., 2006, 45 2672–2692.
Sattayasamitsathit, S.; Burdick, J.; Bash, R.; Kanatharana, P.; Thavarungkul, P.; Wang, J. Alloy nanowires barcodes based on nondestructive X-ray fluorescence readout. Anal. Chem., 2007, 79 7571–7575.
Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis, 2006, 18 533–550.
Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano, 2010, 4 4350–4360.
Zhao, Y. J.; Cheng, Y.; Shang, L. R.; Wang, J.; Xie, Z. Y.; Gu, Z. Z. Microfluidic synthesis of barcode particles for multiplex assays. Small, 2015, 11 151–174.
Zhang, Y. H.; Zhang, L. X.; Deng, R. R.; Tian, J.; Zong, Y.; Jin, D. Y.; Liu, X. G. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc., 2014, 136 4893–4896.
Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.
Service, R. F. Solar energy. Can the upstarts top silicon? Science, 2008, 319 718–720.
Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater., 2010, 22 4249–4269.
Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater., 2010, 20 3411–3424.
Kim, Y. W.; Lee, D. K.; Lee, K. J.; Min, B. R.; Kim, J. H. In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. J. Polym. Sci., Part B: Polym. Phys., 2007, 45 1283–1290.
Chen, M. J.; Zhao, Y. N.; Yang, W. T.; Yin, M. Z. UVirradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial. Langmuir, 2013, 29 16018–16024.
Cocca, M.; D’ Orazio, L. Novel silver/polyurethane nanocomposite by in situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behavior. J. Polym. Sci., Part B: Polym. Phys., 2008, 46 344–350.
Gupta, S.; Uhlmann, P.; Agrawal, M.; Chapuis, S.; Oertel, U.; Stamm, M. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules, 2008, 41 2874–2879.
Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B, 1999, 103 9533–9539.
Deshmukh, R. D.; Composto, R. J. Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem. Mater., 2007, 19 745–754.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Chen, H., Wang, T., Shen, H. et al. Ag nanoparticle/polymer composite barcode nanorods. Nano Res. 8, 2871–2880 (2015). https://doi.org/10.1007/s12274-015-0792-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-015-0792-0