Abstract
The transport properties of artificially engineered superlattices (SLs) can be tailored by incorporating a high density of interfaces in them. Specifically, SiGe SLs with low thermal conductivity values have great potential for thermoelectric generation and nano-cooling of Si-based devices. Here, we present a novel approach for customizing thermal transport across nanostructures by fabricating Si/Si1−x Ge x SLs with well-defined compositional gradients across the SiGe layer from x = 0 to 0.60. We demonstrate that the spatial inhomogeneity of the structure has a remarkable effect on the heat-flow propagation, reducing the thermal conductivity to ∼2.2 W·m−1·K−1, which is significantly less than the values achieved previously with non-optimized long-period SLs. This approach offers further possibilities for future applications in thermoelectricity.

This is a preview of subscription content, access via your institution.
References
Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.
Zhao, L. D.; Wu, H. J.; Hao, S. Q.; Wu, C. I.; Zhou, X. Y.; Biswas, K.; He, J. Q.; Hogan, T. P.; Uher, C.; Wolverton, C. et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 2013, 6, 3346–3355.
Balasubramanian, G.; Puri, I. K.; Böhm, M. C.; Leroy, F. Thermal conductivity reduction through isotope substitution in nanomaterials: Predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Nanoscale 2011, 3, 3714–3720.
Zhang, G.; Li, B. W. Impacts of doping on thermal and thermoelectric properties of nanomaterials. Nanoscale 2010, 2, 1058–1068.
Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.
Rowe, D. M.; Fu, L. W.; Williams, S. G. K. Comments on the thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 1993, 73, 4683–4685.
Joshi, G.; Lee, H.; Lan, Y. C.; Wang, X. W.; Zhu, G. H.; Wang, D. Z.; Gould, R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S. et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670–4674.
Lee, S. M.; Cahill, D. G.; Venkatasubramanian, R. Thermal conductivity of Si-Ge superlattices. Appl. Phys. Lett. 1997, 70, 2957–2959.
Borca-Tasciuc, T.; Liu, W.; Liu, J. L.; Zeng, T. F.; Song, D. W.; Moore, C. D.; Chen, G.; Wang, K. L.; Goorsky, M. S.; Radetic, T. et al. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattice. Microst. 2000, 28, 199–206.
Huxtable, S. T.; Abramson, A. R.; Tien, C. L.; Majumdar, A.; LaBounty, C.; Fan, X.; Zeng, G. H.; Bowers, J. E.; Shakouri, A.; Croke, E. T. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl. Phys. Lett. 2002, 80, 1737–1739.
Chakraborty, S.; Kleint, C. A.; Heinrich, A.; Schneider, C. M.; Schumann, J.; Falke, M.; Teichert, S. Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111). Appl. Phys. Lett. 2003, 83, 4184–4186.
Liu, C. K.; Yu, C. K.; Chien, H. C.; Kuo, S. L.; Hsu, C. Y.; Dai, M. J.; Luo, L. G.; Huang, S. C.; Huang, M. J. Thermal conductivity of Si/SiGe superlattice films. J. Appl. Phys. 2008, 104, 114301.
Pernot, G.; Stoffel, M.; Savic, I.; Pezzoli, F.; Chen, P.; Savelli, G.; Jacquot, A.; Schumann, J.; Denker, U.; Moench, I. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 2010, 9, 491–495.
Chen, P. X.; Katcho, N. A.; Feser, J. P.; Li, W.; Glaser, M.; Schmidt, O. G.; Cahill, D. G.; Mingo, N.; Rastelli, A. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys. Rev. Lett. 2013, 111, 115901.
Liu, J. L.; Khitun, A; Wang, K. L.; Liu, W. L.; Chen, G.; Xie, Q. H.; Thomas, S. G. Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices. Phys. Rev. B 2003, 67, 165333.
Alvarez-Quintana, J.; Alvarez, X.; Rodriguez-Viejo, J.; Jou, D.; Lacharmoise, P. D.; Bernardi, A.; Goñi, A. R.; Alonso, M. I. Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattices. Appl. Phys. Lett. 2008, 93, 013112.
Chang, H. T.; Wang, S. Y.; Lee, S. W. Designer Ge/Si composite quantum dots with enhanced thermoelectric properties. Nanoscale 2014, 6, 3593–3598.
Cecchi, S.; Etzelstorfer, T.; Müller, E.; Samarelli, A.; Llin, L. F.; Chrastina, D.; Isella, G.; Stangl, J.; Paul, D. J. Ge/SiGe superlattices for thermoelectric energy conversion devices. J. Mater. Sci. 2013, 48, 2829–2835.
Samarelli, A.; Llin, L. F.; Cecchi, S.; Frigerio, J.; Etzelstorfer, T.; Mueller, E.; Zhang, Y.; Watling, J. R.; Chrastina, D.; Isella, G. et al. The thermoelectric properties of Ge/SiGe modulation doped superlattices. J. Appl. Phys. 2013, 113, 233704.
Kiselev, A. A.; Kim, K. W.; Stroscio, M. A. Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell. Phys. Rev. B 2000, 62, 6896–6899.
Broido, D. A.; Reinecke, T. L. Lattice thermal conductivity of superlattice structures. Phys. Rev. B 2004, 70, 081310.
Garg, J.; Bonini N.; Marzari N. High thermal conductivity in short-period superlattices. Nano Lett. 2011, 11, 5135–5141.
Savic, I.; Donadio, D.; Gyg, F.; Galli, G. Dimensionality and heat transport in Si-Ge superlattices. Appl. Phys. Lett. 2013, 102, 073113.
Alvarez, F. X.; Alvarez-Quintana, J.; Jou, D.; Viejo, J. R. Analytical expression for thermal conductivity of superlattices. J. Appl. Phys. 2010, 107, 084303.
Cheaito, R.; Duda, J. C.; Beechem, T. E.; Hattar, K.; Ihlefeld, J. F.; Medlin, D. L.; Rodriguez, M. A.; Campion, M. J.; Michael, J.; Piekos, E. S. et al. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films. Phys. Rev. Lett. 2012, 109, 195901.
Cahill, D. G.; Fisher, H. E.; Klitsner T.; Swartz, E. T.; Pohl, R. O. Thermal conductivity of a-Si:H thin films. Phys. Rev. B 1994, 50, 6077–6081.
Alvarez-Quintana J.; Rodríguez-Viejo J. Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sensor Actuat. A 2008, 142, 232–236.
Tong, T.; Majumdar A. Reexamining the 3-omega technique for thin film thermal characterization. Rev. Sci. Inst. 2006, 77, 104902.
Zhylik, A.; Benediktovich, A.; Ulyanenkov, A.; Guerault, H.; Myronov, M.; Dobbie, A.; Leadley, D. R.; Ulyanenkova, T. High-resolution X-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates. J. Appl. Phys. 2011, 109, 123714.
Watling, J. R.; Douglas, J. P. A study of the impact of dislocations on the thermoelectric properties of quantum wells in the Si/SiGe materials system. J. Appl. Phys. 2011, 110, 114508.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Ferrando-Villalba, P., Lopeandía, A.F., Alvarez, F.X. et al. Tailoring thermal conductivity by engineering compositional gradients in Si1−x Ge x superlattices. Nano Res. 8, 2833–2841 (2015). https://doi.org/10.1007/s12274-015-0788-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-015-0788-9
Keywords
- SiGe superlattices
- thermal conductivity
- composition gradients
- heat transport