Nano Research

, Volume 8, Issue 8, pp 2721–2732 | Cite as

True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering

  • Wenyun Wu
  • Jingying Yue
  • Xiaoyang Lin
  • Dongqi Li
  • Fangqiang Zhu
  • Xue Yin
  • Jun Zhu
  • Jiangtao Wang
  • Jin Zhang
  • Yuan Chen
  • Xinhe Wang
  • Tianyi Li
  • Yujun He
  • Xingcan Dai
  • Peng Liu
  • Yang Wei
  • Jiaping Wang
  • Wei Zhang
  • Yidong Huang
  • Li Fan
  • Lina Zhang
  • Qunqing Li
  • Shoushan Fan
  • Kaili Jiang
Research Article

Abstract

Single-walled carbon nanotubes (SWCNTs) illuminated by white light should appear colored due to resonance Rayleigh scattering. However, true-color imaging of SWCNTs on substrates has not been reported, because of the extremely low scattering intensity of SWCNTs and the strong substrate scattering. Here we show that Rayleigh scattering can be greatly enhanced by the interface dipole enhancement effect. Consequently colorful SWCNTs on substrates can be directly imaged under an optical microscope by wide field supercontinuum laser illumination, which facilitates high throughput chirality assignment of individual SWCNTs. This approach, termed “Rayleigh imaging microscopy”, is not restricted to SWCNTs, but widely applicable to a variety of nanomaterials, which enables the colorful nanoworld to be explored under optical microscopes.

Keywords

enhanced Rayleigh scattering Rayleigh imaging microscopy true-color imaging carbon nanotube interface dipole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_779_MOESM1_ESM.mpg (4.6 mb)
Supplementary material, approximately 4.62 MB.

References

  1. [1]
    Fabelinskii, I. L. Molecular Scattering of Light; Plenum Press: New York, 1968.CrossRefGoogle Scholar
  2. [2]
    Yu, Z.; Brus, L. Rayleigh and Raman scattering from individual carbon nanotube bundles. J. Phys. Chem. B 2001, 105, 1123–1134.CrossRefGoogle Scholar
  3. [3]
    Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O’Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540–1543.CrossRefGoogle Scholar
  4. [4]
    Berciaud, S.; Voisin, C.; Yan, H.; Chandra, B.; Caldwell, R.; Shan, Y.; Brus, L. E.; Hone, J.; Heinz, T. F. Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study. Phys. Rev. B 2010, 81, 041414.CrossRefGoogle Scholar
  5. [5]
    Malic, E.; Maultzsch, J.; Reich, S.; Knorr, A. Excitonic Rayleigh scattering spectra of metallic single-walled carbon nanotubes. Phys. Rev. B 2010, 82, 115439.CrossRefGoogle Scholar
  6. [6]
    Joh, D. Y.; Kinder, J.; Herman, L. H.; Ju, S.; Segal, M. A.; Johnson, J. N.; ChanGarnet, K. L.; Park, J. Single-walled carbon nanotubes as excitonic optical wires. Nat. Nanotech. 2011, 6, 51–56.CrossRefGoogle Scholar
  7. [7]
    Liu, K. H.; Hong, X. P.; Zhou, Q.; Jin, C. H.; Li, J. H.; Zhou, W. W.; Liu, J.; Wang, E. G.; Zettl, A.; Wang, F. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nat. Nanotech. 2013, 8, 917–922.CrossRefGoogle Scholar
  8. [8]
    Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L.; Huang, X. M. H.; Huang, M.; Hone, J.; O’Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554–556.CrossRefGoogle Scholar
  9. [9]
    Huang, S.; Qian, Y.; Chen, J.; Cai, Q.; Wan, L.; Wang, S.; Hu, W. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy. J. Am. Chem. Soc. 2008, 130, 11860–11861.CrossRefGoogle Scholar
  10. [10]
    Chu, H.; Cui, R.; Wang, J.; Yang, J.; Li, Y. Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon 2011, 49, 1182–1188.CrossRefGoogle Scholar
  11. [11]
    Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.CrossRefGoogle Scholar
  12. [12]
    Wang, J. T.; Li, T. Y.; Xia, B. Y.; Jin, X.; Wei, H. M.; Wu, W. Y.; Wei, Y.; Wang, J. P.; Liu, P.; Zhang, L. N. et al. Vapor-condensation-assisted optical microscopy for ultralong carbon nanotubes and other nanostructures. Nano Lett. 2014, 14, 3527–3533.CrossRefGoogle Scholar
  13. [13]
    Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. P. Natl. Acad. Sci. USA 2000, 97, 8206–8210.CrossRefGoogle Scholar
  14. [14]
    Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.CrossRefGoogle Scholar
  15. [15]
    Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645.CrossRefGoogle Scholar
  16. [16]
    Joh, D. Y.; Herman, L. H.; Ju, S. Y.; Kinder, J.; Segal, M. A.; Johnson, J. N.; Chan, G.; Park, J. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 2011, 11, 1–7.CrossRefGoogle Scholar
  17. [17]
    Lefebvre, J.; Finnie, P. Polarized light microscopy and spectroscopy of individual single-walled carbon nanotubes. Nano Res. 2011, 4, 788–794.CrossRefGoogle Scholar
  18. [18]
    Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.CrossRefGoogle Scholar
  19. [19]
    He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metalfilm-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981–989.CrossRefGoogle Scholar
  20. [20]
    Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G.; Wang, E. G.; Wang, F. An atlas of carbon nanotube optical transitions. Nat. Nanotech. 2012, 7, 325–329.CrossRefGoogle Scholar
  21. [21]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  22. [22]
    Wang, F.; Sfeir, M. Y.; Huang, L.; Huang, X. H.; Wu, Y.; Kim, J.; Hone, J.; O Brien, S.; Brus, L. E.; Heinz, T. F. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 2006, 96, 167401.CrossRefGoogle Scholar
  23. [23]
    Liu, K.; Jin, C.; Hong, X.; Kim, J.; Zettl, A.; Wang, E.; Wang, F. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nature Phys. 2014, 10, 737–742.CrossRefGoogle Scholar
  24. [24]
    Wu, W. Y.; Yue, J. Y.; Li, D. Q.; Lin, X. Y.; Zhu, F. Q.; Yin, X.; Zhu, J.; Dai, X. C.; Liu, P.; Wei, Y. et al. Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Res. 2015, 8, 303–319.CrossRefGoogle Scholar
  25. [25]
    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P. Carbon nanotubes in water: Structural characteristics and energetics. J. Phys. Chem. B 2001, 105, 9980–9987.CrossRefGoogle Scholar
  26. [26]
    Huang, B. D.; Xia, Y. Y.; Zhao, M. W.; Li, F.; Liu, X. D.; Ji, Y. J.; Song, C. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. J. Chem. Phys. 2005, 122, 0847088.Google Scholar
  27. [27]
    Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics, Mainly Electromagnetism and Matter, Volume II; Addison-Wesley: Reading, Massachusetts, 1977.Google Scholar
  28. [28]
    Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.CrossRefGoogle Scholar
  29. [29]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotech. 2006, 1, 60–65.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wenyun Wu
    • 1
  • Jingying Yue
    • 1
  • Xiaoyang Lin
    • 1
  • Dongqi Li
    • 1
  • Fangqiang Zhu
    • 2
  • Xue Yin
    • 3
  • Jun Zhu
    • 3
  • Jiangtao Wang
    • 1
  • Jin Zhang
    • 1
  • Yuan Chen
    • 1
  • Xinhe Wang
    • 1
  • Tianyi Li
    • 1
  • Yujun He
    • 1
  • Xingcan Dai
    • 1
  • Peng Liu
    • 1
  • Yang Wei
    • 1
  • Jiaping Wang
    • 1
    • 4
  • Wei Zhang
    • 5
  • Yidong Huang
    • 5
  • Li Fan
    • 1
  • Lina Zhang
    • 1
  • Qunqing Li
    • 1
    • 4
  • Shoushan Fan
    • 1
  • Kaili Jiang
    • 1
    • 4
  1. 1.State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijingChina
  2. 2.Department of PhysicsIndiana University-Purdue University IndianapolisIndianapolisUSA
  3. 3.State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision InstrumentsTsinghua UniversityBeijingChina
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina
  5. 5.Tsinghua National Laboratory for Information Science and Technology, Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations