Skip to main content
Log in

Wafer-level site-controlled growth of silicon nanowires by Cu pattern dewetting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An approach for the wafer-level synthesis of size- and site-controlled amorphous silicon nanowires (α-SiNWs) is presented in this paper. Microscale Cu pattern arrays are precisely defined on SiO2 films with the help of photolithography and wet etching. Due to dewetting, Cu atoms shrink to the center of patterns during the annealing process, and react with the SiO2 film to open a diffusion channel for Si atoms to the substrate. α-SiNWs finally grow at the center of Cu patterns, and can be tuned by varying critical factors such as Cu pattern volume, SiO2 thickness, and annealing time. This offers a simple way to synthesize and accurately position a SiNW array on a large area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46.

    Article  Google Scholar 

  2. Rurali, R. Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 2010, 82, 427–449.

    Article  Google Scholar 

  3. Zhao, X. Y.; Wei, C. M.; Yang, L.; Chou, M. Y. Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 2004, 92, 236805.

    Article  Google Scholar 

  4. Fasoli, A.; Milne, W. I. Overview and status of bottom-up silicon nanowire electronics. Mat. Sci. Semicon. Proc. 2012, 15, 601–614.

    Article  Google Scholar 

  5. Wang, Y. L.; Wang, T. Y.; Da, P. M.; Xu, M.; Wu, H.; Zheng, G. F. Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 2013, 25, 5177–5195.

    Article  Google Scholar 

  6. Peng, K. Q.; Lee, S. T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 2011, 23, 198–215.

    Article  Google Scholar 

  7. Schmidt, V.; Wittemann, J. V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702.

    Article  Google Scholar 

  8. Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. D. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.

    Article  Google Scholar 

  9. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A. Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 2011, 133, 20914–20921.

    Article  Google Scholar 

  10. Wang, D. W.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano. Res. 2008, 1, 9–21.

    Article  Google Scholar 

  11. Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21, 015501.

    Article  Google Scholar 

  12. Minamisawa, R. A.; Süess, M. J.; Spolenak, R.; Faist, J.; David, C.; Gobrecht, J.; Bourdelle, K. K.; Sigg, H. Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nat. Commun. 2012, 3, 1096.

    Article  Google Scholar 

  13. Morton, K. J.; Nieberg, G.; Bai, S. F.; Chou, S. Y. Waferscale patterning of sub-40 nm diameter and high aspect ratio (> 50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 2008, 19, 345301.

    Article  Google Scholar 

  14. Schmid, H.; Björk, M. T.; Knoch, J.; Riel, H.; Riess, W.; Rice, P.; Topuria, T. Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane. J. Appl. Phys. 2008, 103, 024304.

    Article  Google Scholar 

  15. Gong, Y. B.; Gao, H. M.; Liu, X.; Liu, W. P.; Li, T.; Zhou, P.; Wang, Y. L. Silicon nanowire fabricated by MEMS technology and its application in biochemical detection. In 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 2009, pp 86–89.

    Chapter  Google Scholar 

  16. Ma, F. J.; Rustagi, S. C.; Samudra, G. S.; Zhao, H.; Singh, N.; Lo, G. Q.; Kwong, D. L. Modeling of stress-retarded thermal oxidation of nonplanar silicon structures for realization of nanoscale devices. IEEE Electron Device Lett. 2010, 31, 719–721.

    Article  Google Scholar 

  17. Yun, S. S.; Yoo, S. K.; Yang, S.; Lee, J. H. Volumeproducible fabrication of a silicon nanowire via crystalline wet etching of (110) silicon. J. Micromech. Microeng. 2008, 18, 095017.

    Article  Google Scholar 

  18. Yu, X.; Wang, Y. C.; Zhou, H.; Liu, Y. X.; Wang, Y.; Li, T.; Wang, Y. L. Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer. Small 2013, 9, 525–530.

    Article  Google Scholar 

  19. Kokai, F.; Inoue, S.; Hidaka, H.; Uchiyama, K.; Takahashi, Y.; Koshio, A. Catalyst-free growth of amorphous silicon nanowires by laser ablation. Appl. Phys. A 2013, 112, 1–7.

    Article  Google Scholar 

  20. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Bello, I.; Lee, S. T. Si nanowires grown from silicon oxide. Chem. Phys. Lett. 1999, 299, 237–242.

    Article  Google Scholar 

  21. Behura, S. K.; Yang, Q. Q.; Hirose, A.; Jani, O.; Mukhopadhyay, I. Catalyst-free synthesis of silicon nanowires by oxidation and reduction process. J. Mater. Sci. 2014, 49, 3592–3597.

    Article  Google Scholar 

  22. Xu, X. D.; Wang, Y. C.; Liu, Z. F.; Zhao, R. G. A new route to large-scale synthesis of silicon nanowires in ultrahigh vacuum. Adv. Funct. Mater. 2007, 17, 1729–1734.

    Article  Google Scholar 

  23. Suzuki, H.; Araki, H.; Tosa, M.; Noda, T. Formation of silicon nanowires by CVD using gold catalysts at low temperatures. Mater. Trans. 2007, 48, 2202–2206.

    Article  Google Scholar 

  24. Morral, A. F. I.; Arbiol, J.; Prades, J. D.; Cirera, A.; Morante, J. R. Synthesis of silicon nanowires with wurtzite crystalline structure by using standard chemical vapor deposition. Adv. Mater. 2007, 19, 1347–1351.

    Article  Google Scholar 

  25. Park, W. I.; Zheng, G. F.; Jiang, X. C.; Tian, B. Z.; Lieber, C. M. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano. Lett. 2008, 8, 3004–3009.

    Article  Google Scholar 

  26. Wang, Y. F.; Lew, K. K.; Ho, T. T.; Pan, L.; Novak, S. W.; Dickey, E. C.; Redwing, J. M.; Mayer, T. S. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano. Lett. 2005, 5, 2139–2143.

    Article  Google Scholar 

  27. Shan, Y. H.; Kalkan, A. K.; Peng, C. Y.; Fonash, S. J. From Si source gas directly to positioned, electrically contacted Si nanowires: The self-assembling “grow-in-place” approach. Nano. Lett. 2004, 4, 2085–2089.

    Article  Google Scholar 

  28. Shan, Y. H.; Fonash, S. J. Self-assembling silicon nanowires for device applications using the nanochannel-guided “growin-place” approach. ACS Nano 2008, 2, 429–434.

    Article  Google Scholar 

  29. Pevzner, A.; Engel, Y.; Elnathan, R.; Tsukernik, A.; Barkay, Z.; Patolsky, F. Confinement-guided shaping of semiconductor nanowires and nanoribbons: “Writing with nanowires”. Nano. Lett. 2012, 12, 7–12.

    Article  Google Scholar 

  30. Zeng, H. J.; Li, T.; Bartenwerfer, M.; Fatikow, S.; Wang, Y. L. In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device. J. Phys. D.-Appl. Phys. 2013, 46, 305501.

    Article  Google Scholar 

  31. Saxena, R.; Frederick, M. J.; Ramanath, G.; Gill, W. N.; Plawsky, J. L. Kinetics of voiding and agglomeration of copper nanolayers on silica. Phys. Rev. B 2005, 72, 115425.

    Article  Google Scholar 

  32. Benouattas, N.; Mosser, A.; Raiser, D.; Faerber, J.; Bouabellou, A. Behaviour of copper atoms in annealed Cu/SiOx/Si systems. Appl. Surf. Sci. 2000, 153, 79–84.

    Article  Google Scholar 

  33. van den Oetelaar, L. C. A.; van den Oetelaar, R. J. A.; Partridge, A.; Flipse, C. F. J.; Brongersma, H. H. Reaction of nanometer-sized Cu particles with a SiO2 substrate. Appl. Phys. Lett. 1999, 74, 2954–2956.

    Article  Google Scholar 

  34. Renard, V. T.; Jublot, M.; Gergaud, P.; Cherns, P.; Rouchon, D.; Chabli, A.; Jousseaume, V. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nat. Nanotechnol. 2009, 4, 654–657.

    Article  Google Scholar 

  35. Jousseaume, V.; Renard, V. T. Cu-based catalysts can make CMOS compatible Si nanowires: Toward reconfigurable interconnects. In 2010 International Interconnect Technology Conference (IITC), Burlingame, USA, 2010, pp 1–3.

    Chapter  Google Scholar 

  36. Yao, Y.; Fan, S. Si nanowires synthesized with Cu catalyst. Mater. Lett. 2007, 61, 177–181.

    Article  Google Scholar 

  37. Wen, C. Y.; Reuter, M. C.; Tersoff, J.; Stach, E. A.; Ross, F. M. Structure, growth kinetics, and ledge flow during vaporsolid-solid growth of copper-catalyzed silicon nanowires. Nano. Lett. 2010, 10, 514–519.

    Article  Google Scholar 

  38. Arbiol, J.; Kalache, B.; Cabarrocas, P. R. I.; Morante, J. R.; Morral, A. F. I. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism. Nanotechnology 2007, 18, 305606.

    Article  Google Scholar 

  39. Yan, H. F.; Xing, Y. J.; Hang, Q. L.; Yu, D. P.; Wang, Y. P.; Xu, J.; Xi, Z. H.; Feng, S. Q. Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism. Chem. Phys. Let.t 2000, 323, 224–228.

    Article  Google Scholar 

  40. BBI Solutions Home Page. http://www.bbisolutions.com/ (accessed Nov 17, 2014).

  41. Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Kelzenberg, M. D.; Lewis, N. S.; Atwater, H. A. Growth of vertically aligned Si wire arrays over large areas (> 1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 2007, 91, 103110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Yi or Tie Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Chen, Y., Ni, Z. et al. Wafer-level site-controlled growth of silicon nanowires by Cu pattern dewetting. Nano Res. 8, 2646–2653 (2015). https://doi.org/10.1007/s12274-015-0771-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0771-5

Keywords

Navigation