Skip to main content
Log in

Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The assembly of nanocrystals into ordered structures called supercrystals or superstructures has become a pivotal frontier owing to numerous useful applications such as correlating the arrangements of atoms in macroscopic crystals and tuning the collective properties to meet the demands of various applications. In this article, recent progress in the preparation of three-dimensional superlattices of nanocrystals is outlined, with a particular emphasis on the driving forces and evolutionary routes beyond orderly assembly. First, the leading or repulsive forces that internally and externally govern the formation of three-dimensional supercrystals are systematically identified and discussed with respect to their origins and functions in three-dimensional self-organization. Then a synoptic introduction of commonly applied means of nanocrystal self-assembly based on growth scenarios such as droplet evaporation and a liquid/liquid interface is presented with specific cases and detailed analyses. Finally, the existing challenges and prospects for this field are briefly highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

    Article  Google Scholar 

  2. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  Google Scholar 

  3. Sun, S. H. Recent advances in chemical synthesis, selfassembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393–403.

    Article  Google Scholar 

  4. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

    Article  Google Scholar 

  5. Murray, C. B.; Sun, S. H.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56.

    Article  Google Scholar 

  6. Amir Parviz, B.; Ryan, D.; Whitesides, G. M. Using selfassembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Packag. 2003, 26, 233–241.

    Article  Google Scholar 

  7. Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358–3371.

    Article  Google Scholar 

  8. Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.

    Article  Google Scholar 

  9. Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000, 1, 18–52.

    Article  Google Scholar 

  10. Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557–562.

    Article  Google Scholar 

  11. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M. Self-assembly: From crystals to cells. Soft Matter 2009, 5, 1110–1128.

    Article  Google Scholar 

  12. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

    Article  Google Scholar 

  13. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  14. Lee, Y. S. Self-Assembly and Nanotechnology: A Force Balance Approach; John Wiley & Sons: Hoboken, NJ, USA, 2008.

    Book  Google Scholar 

  15. Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579–585.

    Article  Google Scholar 

  16. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

    Article  Google Scholar 

  17. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

    Article  Google Scholar 

  18. Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1998, 10, 13–30.

    Article  Google Scholar 

  19. Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289–296.

    Article  Google Scholar 

  20. Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B. Quasicrystalline order in selfassembled binary nanoparticle superlattices. Nature 2009, 461, 964–967.

    Article  Google Scholar 

  21. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404, 746–748.

    Article  Google Scholar 

  22. Quan, Z. W.; Fang, J. Y. Superlattices with non-spherical building blocks. Nano Today 2010, 5, 390–411.

    Article  Google Scholar 

  23. Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 2002, 7, 218–227.

    Article  Google Scholar 

  24. Sciortino, F.; Tartaglia, P. Glassy colloidal systems. Adv. Phys. 2005, 54, 471–524.

    Article  Google Scholar 

  25. Henderson, D.; Duh, D. M.; Chu, X. L.; Wasan, D. An expression for the dispersion force between colloidal particles. J. Colloid Interface Sci. 1997, 185, 265–268.

    Article  Google Scholar 

  26. Hill, T. L. Statistical Mechanics: Principles and Selected Applications; Courier Dover Publications: New York, 2013.

    Google Scholar 

  27. Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.

    Article  Google Scholar 

  28. Hamaker, H. The London—van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072.

    Article  Google Scholar 

  29. Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P. General theory of van der Waals' forces. Sov. Phys. Usp. 1961, 4, 153–176.

    Article  Google Scholar 

  30. Langbein, D. Theory of van der Waals Attraction. Springer: Heidelberg, Berlin, 1974.

    Book  Google Scholar 

  31. Kim, H. Y.; Sofo, J. O.; Velegol, D.; Cole, M. W.; Lucas, A. A. van der Waals forces between nanoclusters: Importance of many-body effects. J. Chem. Phys. 2006, 124, 074504.

    Article  Google Scholar 

  32. Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.

    Article  Google Scholar 

  33. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamondlike lattice. Science 2006, 312, 420–424.

    Article  Google Scholar 

  34. Verwey, E. J. W.; Overbeek, J. Th. G.; Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids; Courier Dover Publications: New York, 1999.

    Google Scholar 

  35. Israelachvili, J. N. Intermolecular and Surface Forces; Academic press: Burlington, MA, USA, 2011.

    Google Scholar 

  36. Grosberg, A. Y.; Nguyen, T. T.; Shklovskii, B. I. Colloquium: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 2002, 74, 329–345.

    Article  Google Scholar 

  37. Pucci, A.; Willinger, M. G.; Liu, F.; Zeng, X. B.; Rebuttini, V.; Clavel, G.; Bai, X.; Ungar, G.; Pinna, N. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices. ACS Nano 2012, 6, 4382–4391.

    Article  Google Scholar 

  38. Xie, Y.; Guo, S. M.; Ji, Y. L.; Guo, C. F.; Liu, X. F.; Chen, Z. Y.; Wu, X. C.; Liu, Q. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa (ethylene glycol) alkanethiol. Langmuir 2011, 27, 11394–11400.

    Article  Google Scholar 

  39. Klajn, R.; Bishop, K. J. M.; Fialkowski, M.; Paszewski, M.; Campbell, C. J.; Gray, T. P.; Grzybowski, B. A. Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 2007, 316, 261–264.

    Article  Google Scholar 

  40. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76.

    Article  Google Scholar 

  41. Kimura, M.; Kobayashi, S.; Kuroda, T.; Hanabusa, K.; Shirai, H. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv. Mater. 2004, 16, 335–338.

    Article  Google Scholar 

  42. Kanehara, M.; Kodzuka, E.; Teranishi, T. Self-assembly of small gold nanoparticles through interligand interaction. J. Am. Chem. Soc. 2006, 128, 13084–13094.

    Article  Google Scholar 

  43. Asakura, S.; Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 1954, 22, 1255–1256.

    Google Scholar 

  44. Israelachvili, J.; Gourdon, D. Putting liquids under molecularscale confinement. Science 2001, 292, 867–868.

    Article  Google Scholar 

  45. Kaplan, P. D.; Rouke, J. L.; Yodh, A. G.; Pine, D. J. Entropically driven surface phase separation in binary colloidal mixtures. Phys. Rev. Lett. 1994, 72, 582.

    Article  Google Scholar 

  46. Jackson, A. M.; Myerson, J. W.; Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat. Mater. 2004, 3, 330–336.

    Article  Google Scholar 

  47. Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998, 396, 444–446.

    Article  Google Scholar 

  48. Godfrey Alig, A. R.; Akbulut, M.; Golan, Y.; Israelachvili, J. Forces between surfactant-coated ZnS nanoparticles in dodecane: Effect of water. Adv. Funct. Mater. 2006, 16, 2127–2134.

    Article  Google Scholar 

  49. Ge, G. L.; Brus, L. Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly. J. Phys. Chem. B 2000, 104, 9573–9575.

    Article  Google Scholar 

  50. Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Selfassembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42.

    Article  Google Scholar 

  51. Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. Int. Ed. 2008, 47, 9685–9690.

    Article  Google Scholar 

  52. Guerrero-Martínez, A.; Pérez-Juste, J.; Carbó-Argibay, E.; Tardajos, G.; Liz-Marzán, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 2009, 48, 9484–9488.

    Article  Google Scholar 

  53. Singh, A.; Gunning, R. D.; Ahmed, S.; Barrett, C. A.; English, N. J.; Garate, J. A.; Ryan, K. M. Controlled semiconductor nanorod assembly from solution: Influence of concentration, charge and solvent nature. J. Mater. Chem. 2012, 22, 1562–1569.

    Article  Google Scholar 

  54. Sigman, M. B.; Saunders, A. E.; Korgel, B. A. Metal nanocrystal superlattice nucleation and growth. Langmuir 2004, 20, 978–983.

    Article  Google Scholar 

  55. Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.

    Article  Google Scholar 

  56. Choi, J. J.; Bealing, C. R.; Bian, K. F.; Hughes, K. J.; Zhang, W. Y.; Smilgies, D. M.; Hennig, R. G.; Engstrom, J. R.; Hanrath, T. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J. Am. Chem. Soc. 2011, 133, 3131–3138.

    Article  Google Scholar 

  57. Korgel, B. A.; Fullam, S.; Connolly, S.; Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: Ordered “soft spheres”. J. Phys. Chem. B 1998, 102, 8379–8388.

    Article  Google Scholar 

  58. Liao, C. W.; Lin, Y. S.; Chanda, K.; Song, Y. F.; Huang, M. H. Formation of diverse supercrystals from self-assembly of a variety of polyhedral gold nanocrystals. J. Am. Chem. Soc. 2013, 135, 2684–2693.

    Article  Google Scholar 

  59. Li, R. P.; Bian, K. F.; Hanrath, T.; Bassett, W. A.; Wang, Z. W. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces. J. Am. Chem. Soc. 2014, 136, 12047–12055.

    Article  Google Scholar 

  60. Hu, H.; Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110, 7090–7094.

    Article  Google Scholar 

  61. Xie, Y.; Guo, S. M.; Guo, C. F.; He, M.; Chen, D. X.; Ji, Y. L.; Chen, Z. Y.; Wu, X. C.; Liu, Q.; Xie, S. S. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism. Langmuir 2013, 29, 6232–6241.

    Article  Google Scholar 

  62. Lu, C. G.; Akey, A. J.; Dahlman, C. J.; Zhang, D. T.; Herman, I. P. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering. J. Am. Chem. Soc. 2012, 134, 18732–18738.

    Article  Google Scholar 

  63. Choi, J. J.; Bian, K. F.; Baumgardner, W. J.; Smilgies, D. M.; Hanrath, T. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices. Nano Lett. 2012, 12, 4791–4798.

    Article  Google Scholar 

  64. Lu, W. G.; Liu, Q. S.; Sun, Z. Y.; He, J. B.; Ezeolu, C.; Fang, J. Y. Super crystal structures of octahedral c-In2O3 nanocrystals. J. Am. Chem. Soc. 2008, 130, 6983–6991.

    Article  Google Scholar 

  65. Courty, A.; Richardi, J.; Albouy, P. A.; Pileni, M. P. How to control the crystalline structure of supracrystals of 5-nm silver nanocrystals. Chem. Mater. 2011, 23, 4186–4192.

    Article  Google Scholar 

  66. Ziherl, P.; Kamien, R. D. Maximizing entropy by minimizing area: Towards a new principle of self-organization. J. Phys. Chem. B 2001, 105, 10147–10158.

    Article  Google Scholar 

  67. Bolhuis, P. G.; Frenkel, D.; Mau, S. C.; Huse, D. A. Entropy difference between crystal phases. Nature 1997, 388, 235–236.

    Article  Google Scholar 

  68. Henry, A. I.; Courty, A.; Pileni, M. P.; Albouy, P. A.; Israelachvili, J. Tuning of solid phase in supracrystals made of silver nanocrystals. Nano Lett. 2008, 8, 2000–2005.

    Article  Google Scholar 

  69. Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. How to predict the growth mechanism of supracrystals from gold nanocrystals. J. Phys. Chem. Lett. 2011, 2, 417–422.

    Article  Google Scholar 

  70. Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. Which forces control supracrystal nucleation in organic media? Adv. Funct. Mater. 2011, 21, 2693–2704.

    Article  Google Scholar 

  71. Demortière, A.; Launois, P.; Goubet, N.; Albouy, P. A.; Petit, C. Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 2008, 112, 14583–14592.

    Article  Google Scholar 

  72. Chan, H.; Demortière, A.; Vukovic, L.; Král, P.; Petit, C. Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling. ACS Nano 2012, 6, 4203–4213.

    Article  Google Scholar 

  73. Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 2000, 104, 8635–8640.

    Article  Google Scholar 

  74. Grosso, D.; Cagnol, F.; Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Amenitsch, H.; Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 2004, 14, 309–322.

    Article  Google Scholar 

  75. Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 1999, 11, 2132–2140.

    Article  Google Scholar 

  76. Kralchevsky, P. A.; Denkov, N. D. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 2001, 6, 383–401.

    Article  Google Scholar 

  77. Dimitrov, A. S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12, 1303–1311.

    Article  Google Scholar 

  78. Norris, D. J.; Arlinghaus, E. G.; Meng, L.; Heiny, R.; Scriven, L. E. Opaline photonic crystals: How does self-assembly work? Adv. Mater. 2004, 16, 1393–1399.

    Article  Google Scholar 

  79. Watanabe, S.; Inukai, K.; Mizuta, S.; Miyahara, M. T. Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir 2009, 25, 7287–7295.

    Article  Google Scholar 

  80. Meijer, J. M.; Hagemans, F.; Rossi, L.; Byelov, D. V.; Castillo, S. I. R.; Snigirev, A.; Snigireva, I.; Philipse, A. P.; Petukhov, A. V. Self-assembly of colloidal cubes via vertical deposition. Langmuir 2012, 28, 7631–7638.

    Article  Google Scholar 

  81. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647.

    Article  Google Scholar 

  82. Xie, S. F.; Zhou, X.; Han, X. G.; Kuang, Q.; Jin, M. S.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Supercrystals from crystallization of octahedral mno nanocrystals. J. Phys. Chem. C 2009, 113, 19107–19111.

    Article  Google Scholar 

  83. Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Kornowski, A.; Förster, S.; Weller, H. CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 2004, 126, 12984–12988.

    Article  Google Scholar 

  84. Bao, S. X.; Zhang, J. W.; Jiang, Z. Y.; Zhou, X.; Xie, Z. X. Understanding the formation of pentagonal cyclic twinned crystal from the solvent dependent assembly of Au nanocrystals into their colloidal crystals. J. Phys. Chem. Lett. 2013, 4, 3440–3444.

    Article  Google Scholar 

  85. Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41.

    Article  Google Scholar 

  86. Böker, A.; He, J. B.; Emrick, T.; Russell, T. P. Selfassembly of nanoparticles at interfaces. Soft Matter 2007, 3, 1231–1248.

    Article  Google Scholar 

  87. Fan, H.; Leve, E.; Gabaldon, J.; Wright, A.; Haddad, R. E.; Brinker, C. J. Ordered two- and three-dimensional arrays self-assembled from water-soluble nanocrystal–micelles. Adv. Mater. 2005, 17, 2587–2590.

    Article  Google Scholar 

  88. Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650–6653.

    Article  Google Scholar 

  89. Zhuang, J. Q.; Wu, H. M.; Yang, Y. A.; Cao, Y. C. Controlling colloidal superparticle growth through solvophobic interactions. Angew. Chem. Int. Ed. 2008, 47, 2208–2212.

    Article  Google Scholar 

  90. Fang, X. L.; Li, Y.; Chen, C.; Kuang, Q.; Gao, X. Z.; Xie, Z. X.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. pH-induced simultaneous synthesis and self-assembly of 3D layered ß-FeOOH nanorods. Langmuir 2009, 26, 2745–2750.

    Article  Google Scholar 

  91. Yang, C. W.; Chiu, C. Y.; Huang, M. H. Formation of freestanding supercrystals from the assembly of polyhedral gold nanocrystals by surfactant diffusion in the solution. Chem. Mater. 2014, 26, 4882–4888.

    Article  Google Scholar 

  92. Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131–137.

    Article  Google Scholar 

  93. Bishop, K. J. M.; Grzybowski, B. A. “Nanoions”: Fundamental properties and analytical applications of charged nanoparticles. ChemPhysChem 2007, 8, 2171–2176.

    Article  Google Scholar 

  94. Kalsin, A. M.; Kowalczyk, B.; Wesson, P.; Paszewski, M.; Grzybowski, B. A. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations. J. Am. Chem. Soc. 2007, 129, 6664–6665.

    Article  Google Scholar 

  95. Kalsin, A. M.; Kowalczyk, B.; Smoukov, S. K.; Klajn, R.; Grzybowski, B. A. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 2006, 128, 15046–15047.

    Article  Google Scholar 

  96. Kalsin, A. M.; Pinchuk, A. O.; Smoukov, S. K.; Paszewski, M.; Schatz, G. C.; Grzybowski, B. A. Electrostatic aggregation and formation of core-shell suprastructures in binary mixtures of charged metal nanoparticles. Nano Lett. 2006, 6, 1896–1903.

    Article  Google Scholar 

  97. Kalsin, A. M.; Grzybowski, B. A. Controlling the growth of “ionic” nanoparticle supracrystals. Nano Lett. 2007, 7, 1018–1021.

    Article  Google Scholar 

  98. Akey, A.; Lu, C. G.; Yang, L.; Herman, I. P. Formation of thick, large-area nanoparticle superlattices in lithographically defined geometries. Nano Lett. 2010, 10, 1517–1521.

    Article  Google Scholar 

  99. Hamon, C.; Postic, M.; Mazari, E.; Bizien, T.; Dupuis, C.; Even-Hernandez, P.; Jimenez, A.; Courbin, L.; Gosse, C.; Artzner, F. et al. Three-dimensional self-assembling of gold nanorods with controlled macroscopic shape and local smectic B order. ACS Nano 2012, 6, 4137–4146.

    Article  Google Scholar 

  100. Xiao, J. Y.; Li, Z.; Ye, X. Z.; Ma, Y. R.; Qi, L. M. Selfassembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale 2014, 6, 996–1004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Siu, C., Zhang, J. et al. Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals. Nano Res. 8, 2445–2466 (2015). https://doi.org/10.1007/s12274-015-0767-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0767-1

Keywords

Navigation