Nano Research

, Volume 8, Issue 8, pp 2445–2466 | Cite as

Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals

Research Article

Abstract

The assembly of nanocrystals into ordered structures called supercrystals or superstructures has become a pivotal frontier owing to numerous useful applications such as correlating the arrangements of atoms in macroscopic crystals and tuning the collective properties to meet the demands of various applications. In this article, recent progress in the preparation of three-dimensional superlattices of nanocrystals is outlined, with a particular emphasis on the driving forces and evolutionary routes beyond orderly assembly. First, the leading or repulsive forces that internally and externally govern the formation of three-dimensional supercrystals are systematically identified and discussed with respect to their origins and functions in three-dimensional self-organization. Then a synoptic introduction of commonly applied means of nanocrystal self-assembly based on growth scenarios such as droplet evaporation and a liquid/liquid interface is presented with specific cases and detailed analyses. Finally, the existing challenges and prospects for this field are briefly highlighted.

Keywords

interparticle forces superlattices supercrystals three-dimensional self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.CrossRefGoogle Scholar
  2. [2]
    Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.CrossRefGoogle Scholar
  3. [3]
    Sun, S. H. Recent advances in chemical synthesis, selfassembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393–403.CrossRefGoogle Scholar
  4. [4]
    Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.CrossRefGoogle Scholar
  5. [5]
    Murray, C. B.; Sun, S. H.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56.CrossRefGoogle Scholar
  6. [6]
    Amir Parviz, B.; Ryan, D.; Whitesides, G. M. Using selfassembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Packag. 2003, 26, 233–241.CrossRefGoogle Scholar
  7. [7]
    Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358–3371.CrossRefGoogle Scholar
  8. [8]
    Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.CrossRefGoogle Scholar
  9. [9]
    Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000, 1, 18–52.CrossRefGoogle Scholar
  10. [10]
    Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557–562.CrossRefGoogle Scholar
  11. [11]
    Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M. Self-assembly: From crystals to cells. Soft Matter 2009, 5, 1110–1128.CrossRefGoogle Scholar
  12. [12]
    Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.CrossRefGoogle Scholar
  13. [13]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  14. [14]
    Lee, Y. S. Self-Assembly and Nanotechnology: A Force Balance Approach; John Wiley & Sons: Hoboken, NJ, USA, 2008.CrossRefGoogle Scholar
  15. [15]
    Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579–585.CrossRefGoogle Scholar
  16. [16]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.CrossRefGoogle Scholar
  17. [17]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.CrossRefGoogle Scholar
  18. [18]
    Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1998, 10, 13–30.CrossRefGoogle Scholar
  19. [19]
    Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289–296.CrossRefGoogle Scholar
  20. [20]
    Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B. Quasicrystalline order in selfassembled binary nanoparticle superlattices. Nature 2009, 461, 964–967.CrossRefGoogle Scholar
  21. [21]
    Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404, 746–748.CrossRefGoogle Scholar
  22. [22]
    Quan, Z. W.; Fang, J. Y. Superlattices with non-spherical building blocks. Nano Today 2010, 5, 390–411.CrossRefGoogle Scholar
  23. [23]
    Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 2002, 7, 218–227.CrossRefGoogle Scholar
  24. [24]
    Sciortino, F.; Tartaglia, P. Glassy colloidal systems. Adv. Phys. 2005, 54, 471–524.CrossRefGoogle Scholar
  25. [25]
    Henderson, D.; Duh, D. M.; Chu, X. L.; Wasan, D. An expression for the dispersion force between colloidal particles. J. Colloid Interface Sci. 1997, 185, 265–268.CrossRefGoogle Scholar
  26. [26]
    Hill, T. L. Statistical Mechanics: Principles and Selected Applications; Courier Dover Publications: New York, 2013.Google Scholar
  27. [27]
    Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.CrossRefGoogle Scholar
  28. [28]
    Hamaker, H. The London—van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072.CrossRefGoogle Scholar
  29. [29]
    Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P. General theory of van der Waals' forces. Sov. Phys. Usp. 1961, 4, 153–176.CrossRefGoogle Scholar
  30. [30]
    Langbein, D. Theory of van der Waals Attraction. Springer: Heidelberg, Berlin, 1974.CrossRefGoogle Scholar
  31. [31]
    Kim, H. Y.; Sofo, J. O.; Velegol, D.; Cole, M. W.; Lucas, A. A. van der Waals forces between nanoclusters: Importance of many-body effects. J. Chem. Phys. 2006, 124, 074504.CrossRefGoogle Scholar
  32. [32]
    Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.CrossRefGoogle Scholar
  33. [33]
    Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamondlike lattice. Science 2006, 312, 420–424.CrossRefGoogle Scholar
  34. [34]
    Verwey, E. J. W.; Overbeek, J. Th. G.; Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids; Courier Dover Publications: New York, 1999.Google Scholar
  35. [35]
    Israelachvili, J. N. Intermolecular and Surface Forces; Academic press: Burlington, MA, USA, 2011.Google Scholar
  36. [36]
    Grosberg, A. Y.; Nguyen, T. T.; Shklovskii, B. I. Colloquium: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 2002, 74, 329–345.CrossRefGoogle Scholar
  37. [37]
    Pucci, A.; Willinger, M. G.; Liu, F.; Zeng, X. B.; Rebuttini, V.; Clavel, G.; Bai, X.; Ungar, G.; Pinna, N. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices. ACS Nano 2012, 6, 4382–4391.CrossRefGoogle Scholar
  38. [38]
    Xie, Y.; Guo, S. M.; Ji, Y. L.; Guo, C. F.; Liu, X. F.; Chen, Z. Y.; Wu, X. C.; Liu, Q. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa (ethylene glycol) alkanethiol. Langmuir 2011, 27, 11394–11400.CrossRefGoogle Scholar
  39. [39]
    Klajn, R.; Bishop, K. J. M.; Fialkowski, M.; Paszewski, M.; Campbell, C. J.; Gray, T. P.; Grzybowski, B. A. Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 2007, 316, 261–264.CrossRefGoogle Scholar
  40. [40]
    Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76.CrossRefGoogle Scholar
  41. [41]
    Kimura, M.; Kobayashi, S.; Kuroda, T.; Hanabusa, K.; Shirai, H. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv. Mater. 2004, 16, 335–338.CrossRefGoogle Scholar
  42. [42]
    Kanehara, M.; Kodzuka, E.; Teranishi, T. Self-assembly of small gold nanoparticles through interligand interaction. J. Am. Chem. Soc. 2006, 128, 13084–13094.CrossRefGoogle Scholar
  43. [43]
    Asakura, S.; Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 1954, 22, 1255–1256.Google Scholar
  44. [44]
    Israelachvili, J.; Gourdon, D. Putting liquids under molecularscale confinement. Science 2001, 292, 867–868.CrossRefGoogle Scholar
  45. [45]
    Kaplan, P. D.; Rouke, J. L.; Yodh, A. G.; Pine, D. J. Entropically driven surface phase separation in binary colloidal mixtures. Phys. Rev. Lett. 1994, 72, 582.CrossRefGoogle Scholar
  46. [46]
    Jackson, A. M.; Myerson, J. W.; Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat. Mater. 2004, 3, 330–336.CrossRefGoogle Scholar
  47. [47]
    Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998, 396, 444–446.CrossRefGoogle Scholar
  48. [48]
    Godfrey Alig, A. R.; Akbulut, M.; Golan, Y.; Israelachvili, J. Forces between surfactant-coated ZnS nanoparticles in dodecane: Effect of water. Adv. Funct. Mater. 2006, 16, 2127–2134.CrossRefGoogle Scholar
  49. [49]
    Ge, G. L.; Brus, L. Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly. J. Phys. Chem. B 2000, 104, 9573–9575.CrossRefGoogle Scholar
  50. [50]
    Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Selfassembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42.CrossRefGoogle Scholar
  51. [51]
    Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. Int. Ed. 2008, 47, 9685–9690.CrossRefGoogle Scholar
  52. [52]
    Guerrero-Martínez, A.; Pérez-Juste, J.; Carbó-Argibay, E.; Tardajos, G.; Liz-Marzán, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 2009, 48, 9484–9488.CrossRefGoogle Scholar
  53. [53]
    Singh, A.; Gunning, R. D.; Ahmed, S.; Barrett, C. A.; English, N. J.; Garate, J. A.; Ryan, K. M. Controlled semiconductor nanorod assembly from solution: Influence of concentration, charge and solvent nature. J. Mater. Chem. 2012, 22, 1562–1569.CrossRefGoogle Scholar
  54. [54]
    Sigman, M. B.; Saunders, A. E.; Korgel, B. A. Metal nanocrystal superlattice nucleation and growth. Langmuir 2004, 20, 978–983.CrossRefGoogle Scholar
  55. [55]
    Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.CrossRefGoogle Scholar
  56. [56]
    Choi, J. J.; Bealing, C. R.; Bian, K. F.; Hughes, K. J.; Zhang, W. Y.; Smilgies, D. M.; Hennig, R. G.; Engstrom, J. R.; Hanrath, T. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J. Am. Chem. Soc. 2011, 133, 3131–3138.CrossRefGoogle Scholar
  57. [57]
    Korgel, B. A.; Fullam, S.; Connolly, S.; Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: Ordered “soft spheres”. J. Phys. Chem. B 1998, 102, 8379–8388.CrossRefGoogle Scholar
  58. [58]
    Liao, C. W.; Lin, Y. S.; Chanda, K.; Song, Y. F.; Huang, M. H. Formation of diverse supercrystals from self-assembly of a variety of polyhedral gold nanocrystals. J. Am. Chem. Soc. 2013, 135, 2684–2693.CrossRefGoogle Scholar
  59. [59]
    Li, R. P.; Bian, K. F.; Hanrath, T.; Bassett, W. A.; Wang, Z. W. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces. J. Am. Chem. Soc. 2014, 136, 12047–12055.CrossRefGoogle Scholar
  60. [60]
    Hu, H.; Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110, 7090–7094.CrossRefGoogle Scholar
  61. [61]
    Xie, Y.; Guo, S. M.; Guo, C. F.; He, M.; Chen, D. X.; Ji, Y. L.; Chen, Z. Y.; Wu, X. C.; Liu, Q.; Xie, S. S. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism. Langmuir 2013, 29, 6232–6241.CrossRefGoogle Scholar
  62. [62]
    Lu, C. G.; Akey, A. J.; Dahlman, C. J.; Zhang, D. T.; Herman, I. P. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering. J. Am. Chem. Soc. 2012, 134, 18732–18738.CrossRefGoogle Scholar
  63. [63]
    Choi, J. J.; Bian, K. F.; Baumgardner, W. J.; Smilgies, D. M.; Hanrath, T. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices. Nano Lett. 2012, 12, 4791–4798.CrossRefGoogle Scholar
  64. [64]
    Lu, W. G.; Liu, Q. S.; Sun, Z. Y.; He, J. B.; Ezeolu, C.; Fang, J. Y. Super crystal structures of octahedral c-In2O3 nanocrystals. J. Am. Chem. Soc. 2008, 130, 6983–6991.CrossRefGoogle Scholar
  65. [65]
    Courty, A.; Richardi, J.; Albouy, P. A.; Pileni, M. P. How to control the crystalline structure of supracrystals of 5-nm silver nanocrystals. Chem. Mater. 2011, 23, 4186–4192.CrossRefGoogle Scholar
  66. [66]
    Ziherl, P.; Kamien, R. D. Maximizing entropy by minimizing area: Towards a new principle of self-organization. J. Phys. Chem. B 2001, 105, 10147–10158.CrossRefGoogle Scholar
  67. [67]
    Bolhuis, P. G.; Frenkel, D.; Mau, S. C.; Huse, D. A. Entropy difference between crystal phases. Nature 1997, 388, 235–236.CrossRefGoogle Scholar
  68. [68]
    Henry, A. I.; Courty, A.; Pileni, M. P.; Albouy, P. A.; Israelachvili, J. Tuning of solid phase in supracrystals made of silver nanocrystals. Nano Lett. 2008, 8, 2000–2005.CrossRefGoogle Scholar
  69. [69]
    Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. How to predict the growth mechanism of supracrystals from gold nanocrystals. J. Phys. Chem. Lett. 2011, 2, 417–422.CrossRefGoogle Scholar
  70. [70]
    Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. Which forces control supracrystal nucleation in organic media? Adv. Funct. Mater. 2011, 21, 2693–2704.CrossRefGoogle Scholar
  71. [71]
    Demortière, A.; Launois, P.; Goubet, N.; Albouy, P. A.; Petit, C. Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 2008, 112, 14583–14592.CrossRefGoogle Scholar
  72. [72]
    Chan, H.; Demortière, A.; Vukovic, L.; Král, P.; Petit, C. Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling. ACS Nano 2012, 6, 4203–4213.CrossRefGoogle Scholar
  73. [73]
    Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 2000, 104, 8635–8640.CrossRefGoogle Scholar
  74. [74]
    Grosso, D.; Cagnol, F.; Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Amenitsch, H.; Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 2004, 14, 309–322.CrossRefGoogle Scholar
  75. [75]
    Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 1999, 11, 2132–2140.CrossRefGoogle Scholar
  76. [76]
    Kralchevsky, P. A.; Denkov, N. D. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 2001, 6, 383–401.CrossRefGoogle Scholar
  77. [77]
    Dimitrov, A. S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12, 1303–1311.CrossRefGoogle Scholar
  78. [78]
    Norris, D. J.; Arlinghaus, E. G.; Meng, L.; Heiny, R.; Scriven, L. E. Opaline photonic crystals: How does self-assembly work? Adv. Mater. 2004, 16, 1393–1399.CrossRefGoogle Scholar
  79. [79]
    Watanabe, S.; Inukai, K.; Mizuta, S.; Miyahara, M. T. Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir 2009, 25, 7287–7295.CrossRefGoogle Scholar
  80. [80]
    Meijer, J. M.; Hagemans, F.; Rossi, L.; Byelov, D. V.; Castillo, S. I. R.; Snigirev, A.; Snigireva, I.; Philipse, A. P.; Petukhov, A. V. Self-assembly of colloidal cubes via vertical deposition. Langmuir 2012, 28, 7631–7638.CrossRefGoogle Scholar
  81. [81]
    Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647.CrossRefGoogle Scholar
  82. [82]
    Xie, S. F.; Zhou, X.; Han, X. G.; Kuang, Q.; Jin, M. S.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Supercrystals from crystallization of octahedral mno nanocrystals. J. Phys. Chem. C 2009, 113, 19107–19111.CrossRefGoogle Scholar
  83. [83]
    Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Kornowski, A.; Förster, S.; Weller, H. CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 2004, 126, 12984–12988.CrossRefGoogle Scholar
  84. [84]
    Bao, S. X.; Zhang, J. W.; Jiang, Z. Y.; Zhou, X.; Xie, Z. X. Understanding the formation of pentagonal cyclic twinned crystal from the solvent dependent assembly of Au nanocrystals into their colloidal crystals. J. Phys. Chem. Lett. 2013, 4, 3440–3444.CrossRefGoogle Scholar
  85. [85]
    Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41.CrossRefGoogle Scholar
  86. [86]
    Böker, A.; He, J. B.; Emrick, T.; Russell, T. P. Selfassembly of nanoparticles at interfaces. Soft Matter 2007, 3, 1231–1248.CrossRefGoogle Scholar
  87. [87]
    Fan, H.; Leve, E.; Gabaldon, J.; Wright, A.; Haddad, R. E.; Brinker, C. J. Ordered two- and three-dimensional arrays self-assembled from water-soluble nanocrystal–micelles. Adv. Mater. 2005, 17, 2587–2590.CrossRefGoogle Scholar
  88. [88]
    Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650–6653.CrossRefGoogle Scholar
  89. [89]
    Zhuang, J. Q.; Wu, H. M.; Yang, Y. A.; Cao, Y. C. Controlling colloidal superparticle growth through solvophobic interactions. Angew. Chem. Int. Ed. 2008, 47, 2208–2212.CrossRefGoogle Scholar
  90. [90]
    Fang, X. L.; Li, Y.; Chen, C.; Kuang, Q.; Gao, X. Z.; Xie, Z. X.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. pH-induced simultaneous synthesis and self-assembly of 3D layered ß-FeOOH nanorods. Langmuir 2009, 26, 2745–2750.CrossRefGoogle Scholar
  91. [91]
    Yang, C. W.; Chiu, C. Y.; Huang, M. H. Formation of freestanding supercrystals from the assembly of polyhedral gold nanocrystals by surfactant diffusion in the solution. Chem. Mater. 2014, 26, 4882–4888.CrossRefGoogle Scholar
  92. [92]
    Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131–137.CrossRefGoogle Scholar
  93. [93]
    Bishop, K. J. M.; Grzybowski, B. A. “Nanoions”: Fundamental properties and analytical applications of charged nanoparticles. ChemPhysChem 2007, 8, 2171–2176.CrossRefGoogle Scholar
  94. [94]
    Kalsin, A. M.; Kowalczyk, B.; Wesson, P.; Paszewski, M.; Grzybowski, B. A. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations. J. Am. Chem. Soc. 2007, 129, 6664–6665.CrossRefGoogle Scholar
  95. [95]
    Kalsin, A. M.; Kowalczyk, B.; Smoukov, S. K.; Klajn, R.; Grzybowski, B. A. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 2006, 128, 15046–15047.CrossRefGoogle Scholar
  96. [96]
    Kalsin, A. M.; Pinchuk, A. O.; Smoukov, S. K.; Paszewski, M.; Schatz, G. C.; Grzybowski, B. A. Electrostatic aggregation and formation of core-shell suprastructures in binary mixtures of charged metal nanoparticles. Nano Lett. 2006, 6, 1896–1903.CrossRefGoogle Scholar
  97. [97]
    Kalsin, A. M.; Grzybowski, B. A. Controlling the growth of “ionic” nanoparticle supracrystals. Nano Lett. 2007, 7, 1018–1021.CrossRefGoogle Scholar
  98. [98]
    Akey, A.; Lu, C. G.; Yang, L.; Herman, I. P. Formation of thick, large-area nanoparticle superlattices in lithographically defined geometries. Nano Lett. 2010, 10, 1517–1521.CrossRefGoogle Scholar
  99. [99]
    Hamon, C.; Postic, M.; Mazari, E.; Bizien, T.; Dupuis, C.; Even-Hernandez, P.; Jimenez, A.; Courbin, L.; Gosse, C.; Artzner, F. et al. Three-dimensional self-assembling of gold nanorods with controlled macroscopic shape and local smectic B order. ACS Nano 2012, 6, 4137–4146.CrossRefGoogle Scholar
  100. [100]
    Xiao, J. Y.; Li, Z.; Ye, X. Z.; Ma, Y. R.; Qi, L. M. Selfassembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale 2014, 6, 996–1004.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chenyu Wang
    • 1
  • Carrie Siu
    • 2
  • Jun Zhang
    • 3
  • Jiye Fang
    • 1
    • 2
  1. 1.Department of ChemistryState University of New York at BinghamtonBinghamtonUSA
  2. 2.Materials Science and Engineering ProgramState University of New York at BinghamtonBinghamtonUSA
  3. 3.State Key Laboratory of Heavy Oil Processing, College of Chemical EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations