Nano Research

, Volume 8, Issue 8, pp 2595–2602 | Cite as

Giga- and terahertz-range nanoemitter based on peapod structure

  • Michail M. Slepchenkov
  • Anna S. Kolesnikova
  • George V. Savostyanov
  • Igor S. Nefedov
  • Ilya V. Anoshkin
  • Albert G. Nasibulin
  • Olga E. Glukhova
Research Article


We propose a theoretical model of a nanoemitter for giga- and terahertz-range waves. The model is based on a peapod structure comprising a carbon nanotube with chiral indices (10, 10). Three encapsulated and partially polymerized fullerene C60 molecules and a positively charged C60 fullerene are trapped inside the nanotube. The motion of the charged fullerene and the radiation frequency were controlled using an external electric field. Stable terahertz radiation at a frequency of 0.36 THz was produced at 300 K with an external electrical field of 10 V/μm. Stable radiation in the gigahertz range was observed at 50 K with an electric field below 10 V/μm. A theoretical simulation was performed using the tight-binding molecular dynamics method with a description of the van der Waals interaction by the Morse potential. The system described by the theoretical model was experimentally observed.


fullerenes nanotubes electronics simulations molecular modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Recur, B.; Guillet, J. P.; Bassel, L.; Fragnol, C.; Manek- Hönninger, I.; Delagnes, J. C.; Benharbone, W.; Desbarats, P.; Domenger, J. P.; Mounaix P. Terahertz radiation for tomographic inspection. Opt. Eng. 2012, 51, 091609.CrossRefGoogle Scholar
  2. [2]
    Sun, Y. W.; Sy, M. Y.; Wang, Y. X.; Ahuja, A. T.; Zhang, Y. T.; Pickwell-Macpherson, E. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy. World J. Radiol. 2011, 3, 55–65.CrossRefGoogle Scholar
  3. [3]
    Planken, P. Microscopy: A terahertz nanoscope. Nature 2008, 456, 454–455.CrossRefGoogle Scholar
  4. [4]
    Rutherglen, C.; Burke, P. Carbon nanotube radio. Nano Lett. 2007, 7, 3296–3299.CrossRefGoogle Scholar
  5. [5]
    Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T. Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators. Phys. Rev. B 2011, 83, 155446.CrossRefGoogle Scholar
  6. [6]
    Zhang, Z.; Li, T. Ultrafast nano-oscillators based on interlayerbridged carbon nanoscrolls. Nanoscale. Res. Lett. 2011, 6, 470.CrossRefGoogle Scholar
  7. [7]
    Zhu, Q.; Wang, R. Research on the possibility of nano-tube antenna. Antennas and Propagation Society International Symposium IEEE 2004, 2, 1927–1930.Google Scholar
  8. [8]
    Hanson, G. W. Fundamental transmitting troperties of carbon nanotube antennas. IEEE Trans. Nanotech. 2005, 53, 3426–3434.CrossRefGoogle Scholar
  9. [9]
    Burke, P. J.; Li, S. D.; Yu, Z. Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotech. 2006, 5, 314–334.CrossRefGoogle Scholar
  10. [10]
    Hao, J.; Hanson, G. W. Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans. Nanotech. 2006, 5, 766–775.CrossRefGoogle Scholar
  11. [11]
    Lan, Y.; Zeng, B. Q.; Zhang, H.; Chen, B. R.; Yang, Z. H. Simulation of carbon nanotube THz antenna arrays. Int. J. Infrared. Millimet. Waves. 2006, 27, 871–877.CrossRefGoogle Scholar
  12. [12]
    Wang, Y.; Kempa, K.; Kimball, B.; Carlson, J. B.; Benham, G.; Li, W. Z.; Kempa, T.; Rybczynski, J.; Herczynski, A.; Ren, Z. F. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 2004, 85, 2607–2609.CrossRefGoogle Scholar
  13. [13]
    Slepyan, G. Y.; Shuba, M. V.; Maksimenko, S. A.; Lakhtakia, A. Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantenna. Phys. Rev. B 2006, 73, 195416.CrossRefGoogle Scholar
  14. [14]
    Maksimenko, S. A.; Slepyan, G. Y.; Nemilentsau, A. M.; Shuba, M. V. Carbon nanotube antenna: Far-field, near-field and thermal-noise properties. Physica E 2008, 40, 2360–2364.CrossRefGoogle Scholar
  15. [15]
    Shuba, M. V.; Maksimenko, S. A.; Lakhtakia, A. Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes. Phys. Rev. B 2007, 76, 155407.CrossRefGoogle Scholar
  16. [16]
    Shuba, M. V.; Slepyan, G. Y.; Maksimenko, S. A.; Thomsen, C.; Lakhtakia, A. Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys. Rev. B 2009, 79, 155403.CrossRefGoogle Scholar
  17. [17]
    Kibis, O. V.; Portnoi, M. E. Carbon nanotubes: A new type of emitter in the terahertz range. Techn. Phys. Lett. 2005, 31, 671–672.CrossRefGoogle Scholar
  18. [18]
    Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes: Basic Concepts and Physical Properties; Wiley-VCH: Weinheim, 2004.Google Scholar
  19. [19]
    Tonouchi, M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1, 97–105.CrossRefGoogle Scholar
  20. [20]
    Slepyan, G. Y.; Shuba, M. V.; Maksimenko, S. A.; Thomsen, C.; Lakhtakia, A. Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment. Phys. Rev. B 2010, 81, 205423.CrossRefGoogle Scholar
  21. [21]
    Su, H. B.; Goddard, W. A.; Zhao, Y. Dynamic friction force in a carbon peapod oscillator. Nanotechnology 2006, 17, 5691–5695.CrossRefGoogle Scholar
  22. [22]
    Kwon, Y. K.; Tománek, D.; Iijima, S. “Bucky-shuttle” memory device: Synthetic approach and molecular dynamics simulations. Phys. Rev. Lett. 1999, 82, 1470–1473.CrossRefGoogle Scholar
  23. [23]
    Talyzin, A. V.; Luzan, S. M.; Anoshkin, I. V.; Nasibulin, A. G.; Jiang, H.; Kauppinen, E. I. Hydrogen-driven collapse of C60 inside single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2012, 51, 4435–4439.CrossRefGoogle Scholar
  24. [24]
    Pai, W. W.; Jeng, H. T.; Cheng, C. M.; Lin, C. H.; Xiao, X. D.; Zhao, A. D.; Zhang, X. Q.; Xu, G.; Shi, X. Q.; Van Hove, M. A. et al. Optimal electron doping of a C60 monolayer on Cu(111) via interface reconstruction. Phys. Rev. Lett. 2010, 104, 036103.CrossRefGoogle Scholar
  25. [25]
    Glukhova, O. E. Dimerization of miniature C20 and C28 fullerenes in nanoautoclave. J. Mol. Model. 2011, 17, 573–576.CrossRefGoogle Scholar
  26. [26]
    Landau, L. D.; Lifshitz, E. M. The Classical Theory of Fields; Pentagon Press: London, 1971.Google Scholar
  27. [27]
    Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular-dynamics with coupling to an external bath. Chem. Phys. 1984, 81, 3684–3690.Google Scholar
  28. [28]
    Lemak, A. S.; Balabaev, N. K. Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method. J. Comput. Chem. 1996, 17, 1685–1695.CrossRefGoogle Scholar
  29. [29]
    Noji, H.; Yasuda, R.; Yoshida, M.; Kinoshita, K. Direct observation of the rotation of F1-ATPase. Nature 1997, 386, 299–302.CrossRefGoogle Scholar
  30. [30]
    Kataura, H.; Maniwa, Y.; Kodama, T.; Kikuchi, K.; Hirahara, K.; Iijima, S.; Suzuki, S.; Kratschmer, W.; Achiba, Y. Fullerenepeapods: Synthesis, structure, and Raman spectroscopy. AIP Conf. Proc. 2001, 591, 251–255.CrossRefGoogle Scholar
  31. [31]
    Li, C. Z.; Chueh, C. C.; Ding, F. Z.; Yip, H. L.; Liang, P. W.; Li, X. S.; Jen, A. K. Y. Doping of fullerenes via anioninduced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. Adv. Mater. 2013, 25, 4425–4430.CrossRefGoogle Scholar
  32. [32]
    Sun, B. Y.; Sato, Y.; Suenaga, K.; Okazaki, T.; Kishi, N.; Sugai, T.; Bandow, S.; Iijima, S.; Shinohara, H. Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)n@SWNT nano-peapods. J. Am. Chem. Soc. 2005, 127, 17972–17973.CrossRefGoogle Scholar
  33. [33]
    Kalbáč, M.; Kavan, L.; Zukalová, M.; Dunsch, L. Two positions of potassium in chemically doped C60 peapods: An in situ spectroelectrochemical study. J. Phys. Chem. B. 2004, 108, 6275–6280.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michail M. Slepchenkov
    • 1
  • Anna S. Kolesnikova
    • 1
  • George V. Savostyanov
    • 1
  • Igor S. Nefedov
    • 2
  • Ilya V. Anoshkin
    • 2
  • Albert G. Nasibulin
    • 2
    • 3
  • Olga E. Glukhova
    • 1
  1. 1.Department of PhysicsSaratov State UniversitySaratovRussia
  2. 2.Department of Radio Science and EngineeringAalto UniversityAaltoFinland
  3. 3.Skolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations