Skip to main content

Advertisement

SpringerLink
  • Nano Research
  • Journal Aims and Scope
  • Submit to this journal
Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Recent Advances on Surface-modified Biomaterials Promoting Selective Adhesion and Directional Migration of Cells

13 May 2021

Chen-Xi Tu & Chang-You Gao

Poly(amidoamine)-alginate hydrogels: directing the behavior of mesenchymal stem cells with charged hydrogel surfaces

30 June 2018

André Schulz, Alisa Katsen-Globa, … Heiko Zimmermann

A SupraGel for efficient production of cell spheroids

11 February 2022

Sifan Ai, Hui Li, … Zhimou Yang

Development of thermo-responsive polycaprolactone macrocarriers conjugated with Poly(N-isopropyl acrylamide) for cell culture

05 March 2019

Linh T. B. Nguyen, Akinlolu O. O. Odeleye, … Hua Ye

Cationic Polymers for Coating Living Cells

19 November 2018

Daewha Hong & Sung Ho Yang

Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation

02 April 2018

Ee-Seul Kang, Da-Seul Kim, … Tae-Hyung Kim

Advancing Cell-Instructive Biomaterials Through Increased Understanding of Cell Receptor Spacing and Material Surface Functionalization

20 November 2020

Stephanie A. Maynard, Charles W. Winter, … Molly M. Stevens

Magnetic Nanoparticles as a Strong Contributor to the Biocompatibility of Ferrogels

01 April 2020

F. A. Blyakhman, E. B. Makarova, … G. V. Kurlyandskaya

Construction of higher-order cellular microstructures by a self-wrapping co-culture strategy using a redox-responsive hydrogel

21 April 2020

Wahyu Ramadhan, Genki Kagawa, … Noriho Kamiya

Download PDF
  • Research Article
  • Open Access
  • Published: 29 August 2015

Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters

  • Maria R. Dzamukova1,
  • Ekaterina A. Naumenko1,
  • Elvira V. Rozhina1,
  • Alexander A. Trifonov1 &
  • …
  • Rawil F. Fakhrullin1 

Nano Research volume 8, pages 2515–2532 (2015)Cite this article

  • 1232 Accesses

  • 52 Citations

  • 7 Altmetric

  • Metrics details

Abstract

Regenerative medicine requires new ways to assemble and manipulate cells for fabrication of tissue-like constructs. Here we report a novel approach for cell surface engineering of human cells using polymer-stabilized magnetic nanoparticles (MNPs). Cationic polyelectrolyte-coated MNPs are directly deposited onto cellular membranes, producing a mesoporous semi-permeable layer and rendering cells magnetically responsive. Deposition of MNPs can be completed within minutes, under cell-friendly conditions (room temperature and physiologic media). Microscopy (TEM, SEM, AFM, and enhanced dark-field imaging) revealed the intercalation of nanoparticles into the cellular microvilli network. A detailed viability investigation was performed and suggested that MNPs do not inhibit membrane integrity, enzymatic activity, adhesion, proliferation, or cytoskeleton formation, and do not induce apoptosis in either cancer or primary cells. Finally, magnetically functionalized cells were employed to fabricate viable layered planar (two-cell layers) cell sheets and 3D multicellular spheroids.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Ito, A.; Jitsunobu, H.; Kawabe, Y.; Kamihira, M. Construction of heterotypic cell sheets by magnetic force-based 3-D coculture of HepG2 and NIH3T3 cells. J. Biosci. Bioeng. 2007, 104, 371–378.

    Article  Google Scholar 

  2. Perea, H.; Aigner, J.; Heverhagen, J. T.; Hopfner, U.; Wintermantel, E. Vascular tissue engineering with magnetic nanoparticles: Seeing deeper. J. Tissue Eng. Regen. Med. 2007, 1, 318–321.

    Article  Google Scholar 

  3. Ito, A.; Takizawa, Y.; Honda, H.; Hata, K.; Kagami, H.; Ueda, M.; Kobayashi, T. Tissue engineering using magnetite nanoparticles and magnetic force: Heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 2004, 10, 833–840.

    Article  Google Scholar 

  4. Shimizu, K.; Ito, A.; Arinobe, M.; Murase, Y.; Iwata, Y.; Narita, Y.; Kagami, H.; Ueda, M.; Honda, H. Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. J. Biosci. Bioeng. 2007, 103, 472–480.

    Article  Google Scholar 

  5. Yamamoto, Y.; Ito, A.; Kato, M.; Kawabe, Y.; Shimizu, K.; Fujita, H.; Nagamori, E.; Kamihira, M. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. J. Biosci. Bioeng. 2009, 108, 538–543.

    Article  Google Scholar 

  6. Ito, A.; Takahashi, T.; Kawabe, Y.; Kamihira, M. Human beta defensin-3 engineered keratinocyte sheets constructed by a magnetic force-based tissue engineering technique. J. Biosci. Bioeng. 2009, 108, 244–247.

    Article  Google Scholar 

  7. Mattix, B.; Olsen, T. R.; Gu, Y.; Casco, M.; Herbst, A.; Simionescu, D. T.; Visconti, R.P.; Kornev, K. G.; Alexis, F. Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater. 2014, 10, 623–629.

    Article  Google Scholar 

  8. Mattix, B. M.; Olsen, T. R.; Casco, M.; Reese, L.; Poole, J. T.; Zhang, J.; Visconti, R. P.; Simionescu, A.; Simionescu, D. T.; Alexis, F. Janus magnetic cellular spheroids for vascular tissue engineering. Biomaterials 2014, 35, 949–960.

    Article  Google Scholar 

  9. Ho, V. H. B.; Müller, K. H.; Barcza, A.; Chen, R. J.; Slater, N. K. H. Generation and manipulation of magnetic multicellular spheroids. Biomaterials 2010, 31, 3095–3102.

    Article  Google Scholar 

  10. Tseng, H.; Balaoing, L. R.; Grigoryan, B.; Raphael, R. M.; Killian, T. C.; Souza, G. R.; Grande-Allen, K. J. A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomater. 2014, 10, 173–182.

    Article  Google Scholar 

  11. Gloria, A.; Russo, T.; D’Amora, U.; Zeppetelli, S.; D’Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; et al. Magnetic poly(ɛ-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc. Interface 2013, 10, 20120833.

    Article  Google Scholar 

  12. Andreas, K.; Georgieva, R.; Ladwig, M.; Mueller, S.; Notter, M.; Sittinger, M.; Ringe, J. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 2012, 33, 4515–4525.

    Article  Google Scholar 

  13. Akiyama, H.; Ito, A.; Kawabe, Y.; Kamihira, M. Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques. Biomaterials 2010, 31, 1251–1259.

    Article  Google Scholar 

  14. Chaudeurge, A.; Wilhelm, C.; Chen-Tournoux, A.; Farahmand, P.; Bellamy, V.; Autret, G.; Ménager, C.; Hagège, A.; Larghéro, J.; Gazeau, F.; et al. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention? Cell Transpl. 2012, 21, 679–691.

    Article  Google Scholar 

  15. Babič, M.; Horák, D.; Trchová, M.; Jendelová, P.; Glogarová, K.; Lesný, P.; Herynek, V.; Hájek, M.; Syková, E. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem. 2008, 19, 740–750.

    Article  Google Scholar 

  16. Tomitaka, A.; Koshi, T.; Hatsugai, S.; Yamada, T.; Takemura, Y. Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. J. Magn. Magn. Mater. 2011, 323, 1398–1403.

    Article  Google Scholar 

  17. Kim, J. A.; Choi, J. H.; Kim, M.; Rhee, W. J.; Son, B.; Jung, H. K.; Park, T. H. High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Biomaterials 2013, 34, 8555–8563.

    Article  Google Scholar 

  18. Dzamukova, M. R.; Naumenko, E. A.; Zakirova, E. Y.; Dzamukov, R. A.; Shilyagin, P. A.; Ilinskaya, O. N.; Fakhrullin, R. F. Polymer-stabilised magnetic nanoparticles do not affect the viability of magnetically-functionalised cells. Cell. Transpl. Tissue Eng. 2012, 7, 52–56.

    Google Scholar 

  19. Zhang, M. L.; Earhart, C.M.; Ooi, C.; Wilson, R.J.; Tang, M.; Wang, S. X. Functionalization of high-moment magnetic nanodisks for cell manipulation and separation. Nano Res. 2013, 6, 745–751.

    Article  Google Scholar 

  20. Dzamukova, M. R.; Naumenko, E. A.; Lannik, N. I.; Fakhrullin, R. F. Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomater. Sci. 2013, 1, 810–813.

    Article  Google Scholar 

  21. Fakhrullin, R. F.; Paunov, V. N. Fabrication of living cellosomes of rod-like and rhombohedral morphologies based on magnetically responsive templates. Chem. Commun. 2009, 2511–2513.

    Google Scholar 

  22. Zhang, D. Y.; Fakhrullin, R. F.; Özmen, M.; Wang, H.; Wang, J.; Paunov, V. N.; Li, G. H.; Huang, W. E. Functionalization of whole-cell bacterial reporters with magnetic nanoparticles. Microb. Biotechnol. 2011, 4, 89–97.

    Article  Google Scholar 

  23. Fakhrullin, R. F.; Shlykova, L.V.; Zamaleeva, A. I.; Nurgaliev, D. K.; Osin, Y. N.; García-Alonso, J.; Paunov, V. N. Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles. Macromol. Biosci. 2010, 10, 1257–1264.

    Article  Google Scholar 

  24. Fakhrullin, R. F.; García-Alonso, J.; Paunov, V. N. A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter 2010, 6, 391–397.

    Article  Google Scholar 

  25. Dzamukova, M. R.; Zamaleeva, A. I.; Ishmuchametova, D. G.; Osin, Y. N.; Kiyasov, A. P.; Nurgaliev, D. K.; Ilinskaya, O. N.; Fakhrullin R. F. A direct technique for magnetic functionalization of living human cells. Langmuir 2011, 27, 14386–14393.

    Article  Google Scholar 

  26. Wilhelm, C.; Gazeau, F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 2008, 29, 3161–3174.

    Article  Google Scholar 

  27. Huang, C.-Y.; Ger, T.-R.; Wei, Z.-H.; Lai, M.-F. Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level. PLoS One 2014, 9, e96550.

    Article  Google Scholar 

  28. Liu, S-Y.; Long, L.; Yuan, Z.; Yin, L.-P.; Liu, R. Effect and intracellular uptake of pure magnetic Fe3O4 nanoparticles in the cells and organs of lung and liver. Chin. Med. J. 2009, 122, 1821–1825.

    Google Scholar 

  29. Hoskins, C.; Wang, L. J.; Cheng, W. P.; Cuschieri, A. Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: Which tests and what protocols? Nanoscale Res. Lett. 2012, 7, 77.

    Article  Google Scholar 

  30. Luther, E.; Petters, C.; Bulcke, F.; Kaltz, A.; Thiel, K.; Bickmeyer, U.; Dringen, R. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater. 2013, 9, 8454–8465.

    Article  Google Scholar 

  31. Griffon, G.; Marchal, C.; Merlin, J. L.; Marchal, S.; Parache, R. M.; Bey, P. Radiosensitivity of multicellular tumour spheroids obtained from human ovarian cancers. Eur. J. Cancer 1995, 31, 85–91.

    Article  Google Scholar 

  32. Couchman, J. R.; Höök, M.; Rees, D. A.; Timpl, R. Adhesion, growth, and matrix production by fibroblasts on laminin substrates. J. Cell Biol. 1983, 96, 177–183.

    Article  Google Scholar 

  33. Konnova, S. A.; Sharipova, I. R.; Demina, T.; Osin, Y. N.; Yarullina, D. R.; Ilinskaya, O. N.; Lvov, Y. M.; Fakhrullin, R. F. Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chem. Commun. 2013, 49, 4208–4210.

    Article  Google Scholar 

  34. Soenen, S. J.; Himmelreich, U.; Nuytten, N.; Pisanic, T. R.; Ferrari, A.; De Cuyper, M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 2010, 6, 2136–2145.

    Article  Google Scholar 

  35. Buyukhatipoglu, K.; Clyne, A. M. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. 2011, 96A, 186–195.

    Article  Google Scholar 

  36. Yoon, S.; Kim, J. A.; Lee, S. H.; Kim, M.; Park, T. H. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 2013, 13, 1522–1528.

    Article  Google Scholar 

  37. Lin, R.-Z.; Chu, W.-C.; Chiang, C.-C.; Lai, C.-H.; Chang, H.-Y. Magnetic reconstruction of three-dimensional tissues from multicellular spheroids. Tissue Eng. 2008, 14, 197–205.

    Article  Google Scholar 

  38. Walser, R.; Metzger, W.; Görg, A.; Pohlemann, T.; Menger, M. D.; Laschke, M. W. Generation of co-culture spheroids as vascularisation units for bone tissue engineering. Eur. Cells Mater. 2013, 26, 222–233.

    Google Scholar 

  39. Carver, K.; Ming, X.; Juliano, R. L. Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. Mol. Ther. Nucleic Acids 2014, 3, e153.

    Article  Google Scholar 

  40. Dufau, I.; Frongia, C.; Sicard, F.; Dedieu, L.; Cordelier, P.; Ausseil, F.; Ducommun, B.; Valette, A. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: Application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 2012, 12, 15–26.

    Article  Google Scholar 

  41. Kunz-Schughart, L. A.; Kreutz, M.; Knuechel, R. Multicellular spheroids: A three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 1998, 79, 1–23.

    Article  Google Scholar 

  42. Xia, L.; Sakban, R. B.; Qu, Y. H.; Hong, X.; Zhang, W. X.; Nugraha, B.; Tong, W. H.; Ananthanarayanan, A.; Zheng, B.; Chau, I. Y.-Y.; et al. Tethered spheroids as an in vitro hepatocyte model for drug safety screening. Biomaterials 2012, 33, 2165–2176.

    Article  Google Scholar 

  43. Breslin, S.; O’Driscoll L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today 2013, 18, 240–249.

    Article  Google Scholar 

  44. Chan, H. F.; Zhang, Y.; Ho, Y.-P.; Chiu, Y.-L.; Jung, Y.; Leong, K. W. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep. 2013, 3, 3462.

    Google Scholar 

  45. Mahmoudi, M.; Simchi, A.; Milani, A. S.; Stroeve, P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 2009, 336, 510–518.

    Article  Google Scholar 

  46. Berry, C. C.; Wells, S.; Charles, S.; Curtis, A. S. G. Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 2003, 24, 4551–4557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 420008, Republic of Tatarstan, Russian Federation

    Maria R. Dzamukova, Ekaterina A. Naumenko, Elvira V. Rozhina, Alexander A. Trifonov & Rawil F. Fakhrullin

Authors
  1. Maria R. Dzamukova
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ekaterina A. Naumenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Elvira V. Rozhina
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alexander A. Trifonov
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Rawil F. Fakhrullin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rawil F. Fakhrullin.

Additional information

Both authors contributed equally to this study.

Electronic supplementary material

Supplementary material, approximately 446 KB.

Supplementary material, approximately 2.59 MB.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dzamukova, M.R., Naumenko, E.A., Rozhina, E.V. et al. Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Res. 8, 2515–2532 (2015). https://doi.org/10.1007/s12274-015-0759-1

Download citation

  • Received: 12 January 2015

  • Revised: 25 February 2015

  • Accepted: 02 March 2015

  • Published: 29 August 2015

  • Issue Date: August 2015

  • DOI: https://doi.org/10.1007/s12274-015-0759-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • magnetic nanoparticles
  • artificial multicellular clusters
  • magnetic modification
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.