Nano Research

, Volume 8, Issue 7, pp 2373–2379 | Cite as

X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations

  • Slávka Kaščáková
  • Alexandre Giuliani
  • Sara Lacerda
  • Agnès Pallier
  • Pascal Mercère
  • Éva Tóth
  • Matthieu RéfrégiersEmail author
Research Article


We report lanthanide-based micelles integrating hypericin (Hyp) for X-ray-triggered photodynamic therapy (PDT). The lanthanide luminescence induced by X-ray irradiation excites the photosensitizer, which leads to the generation of singlet oxygen. This versatile approach can be extended to other photosensitizers or other types of liponanoparticles and can allow for magnetic resonance imaging (MRI) guidance.


photodynamic therapy liponanoparticles X-ray deep tumour photosensitizer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_747_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1199 KB.


  1. [1]
    Setua, S.; Menon, D.; Asok, A.; Nair S.; Koyakutty, M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials 2010, 31, 714–729.CrossRefGoogle Scholar
  2. [2]
    Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.CrossRefGoogle Scholar
  3. [3]
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefGoogle Scholar
  4. [4]
    Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.CrossRefGoogle Scholar
  5. [5]
    Delehanty, J. B.; Bradburne, C. E.; Susumu, K.; Boeneman, K.; Mei, B. C.; Farrell, D.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H.; Medintz, I. L. Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J. Am. Chem. Soc. 2011, 133, 10482–10489.CrossRefGoogle Scholar
  6. [6]
    Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing cellular events, one quantum dot at a time. Nat. Methods 2010, 7, 275–285.CrossRefGoogle Scholar
  7. [7]
    Faulkner, S.; Pope, S. J. A.; Burton-Pye, B. P. Lanthanide complexes for luminescence imaging applications. Appl. Spectrosc. Rev. 2005, 40, 1–31.CrossRefGoogle Scholar
  8. [8]
    LaVan, D. A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 2003, 21, 1184–1191.CrossRefGoogle Scholar
  9. [9]
    Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Delivery Rev. 2002, 54, 631–651.CrossRefGoogle Scholar
  10. [10]
    Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Delivery Rev. 2010, 62, 1064–1079.CrossRefGoogle Scholar
  11. [11]
    Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.CrossRefGoogle Scholar
  12. [12]
    Zhou, Z. X.; Lu, Z. R. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2013, 5, 1–18.CrossRefGoogle Scholar
  13. [13]
    Merbach, A. S.; Helm, L. Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons, Ltd: Chichester, West Sussex, UK, 2013.CrossRefGoogle Scholar
  14. [14]
    Maguire, J. A.; Zhu, Y. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment; World Scientific Pub. Co.: Hackensack, NJ, 2012.Google Scholar
  15. [15]
    Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227.CrossRefGoogle Scholar
  16. [16]
    Werts, M. H. V. Making sense of lanthanide luminescence. Sci. Prog. 2005, 88, 101–131.CrossRefGoogle Scholar
  17. [17]
    Urbain, G. La phosphorescence cathodique des terres rares. Ann. Chim. Phys. 1909, 8, 222–375.Google Scholar
  18. [18]
    Kašcáková, S.; Giuliani, A.; Jamme, F.; Refregiers, M. Photodynamic Therapy. In Radiation Damage in Biomolecular Systems; Springer: Dordrecht, Heidelberg, London, New York, 2012; pp 445–460.CrossRefGoogle Scholar
  19. [19]
    Roelants, M.; Lackner, B.; Waser, M.; Falk, H.; Agostinis, P.; Van Poppel, H.; de Witte, P. A. M. In vitro study of the phototoxicity of bathochromically-shifted hypericin derivatives. Photochem. Photobiol. Sci. 2009, 8, 822–829.CrossRefGoogle Scholar
  20. [20]
    Carpenter, S.; Fehr, M. J.; Kraus, G. A.; Petrich, J. W. Chemiluminescent activation of the antiviral activity of hypericin: A molecular flashlight. Proc. Natl. Acad. Sci. USA 1994, 91, 12273–12277.CrossRefGoogle Scholar
  21. [21]
    Wen, J.; Chowdhury, P.; Wills, N. J.; Wannemuehler, Y.; Park, J.; Kesavan, S.; Carpenter, S.; Kraus, G. A.; Petrich, J. W. Toward the molecular flashlight: Preparation, properties and photophysics of a hypericin-luciferin tethered molecule. Photochem. Photobiol. 2002, 76, 153–157.CrossRefGoogle Scholar
  22. [22]
    Theodossiou, T.; Hothersall, J. S.; Woods, E. A.; Okkenhaug, K.; Jacobson, J.; MacRobert, A. J. Firefly luciferin-activated rose bengal: In vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells. Cancer Res. 2003, 63, 1818–1821.Google Scholar
  23. [23]
    Wang, F.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Facile synthesis of water-soluble LaF3: Ln3+ nanocrystals. J. Mater. Chem. 2006, 16, 1031–1034.CrossRefGoogle Scholar
  24. [24]
    Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G.; Westcott, S.; Woo, B. K. X-ray luminescence of LaF3: Tb3+ and LaF3: Ce3+, Tb3+ water-soluble nanoparticles. J. Appl. Phys. 2008, 103, 063105.CrossRefGoogle Scholar
  25. [25]
    Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 2008, 92, 043901.CrossRefGoogle Scholar
  26. [26]
    Bulin, A. L.; Truillet, C.; Chouikrat, R.; Lux, F.; Frochot, C.; Amans, D.; Ledoux, G.; Tillement, O.; Perriat, P.; Barberi-Heyob, M. et. al. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyins. J. Phys. Chem. C 2013, 117, 21583–21589.CrossRefGoogle Scholar
  27. [27]
    Ma, L.; Zou, X.; Chen, W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J. Biomed. Nanotechnol. 2014, 10, 1501–1508.CrossRefGoogle Scholar
  28. [28]
    Ma, L.; Zou, X. J.; Bui, B.; Chen, W.; Song, K. H.; Solberg, T. X-ray excited ZnS: Cu, Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett. 2014, 105, 013702.CrossRefGoogle Scholar
  29. [29]
    Bonnet, C. S.; Pellegatti, L.; Buron, F.; Shade, C. M.; Villette, S.; Kubícek, V.; Guillaumet, G.; Suzenet, F.; Petoud, S.; Tóth, É. Hydrophobic chromophore cargo in micellar structures: A different strategy to sensitize lanthanide cations. Chem. Commun. 2010, 46, 124–126.CrossRefGoogle Scholar
  30. [30]
    Bonnet, C. S.; Buron, F.; Caillé, F., Shade, C. M.; Drahoš, B.; Pellegatti, L.; Zhang, J.; Villette, S.; Helm, L.; Pichon, C. et. al. Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. Chem.—Eur. J. 2012, 18, 1419–1431.CrossRefGoogle Scholar
  31. [31]
    Chrysochoos, J. Fluorescence enhancement of Eu3+ by Tb3+ in dimethylsulfoxide (DMSO). J. Lumin. 1974, 9, 79–93.CrossRefGoogle Scholar
  32. [32]
    Jiao, H.; Zhang, N.; Jing, X. P.; Jiao, D. M. Influence of rare earth elements (Sc, La Gd and Lu) on the luminescent properties of green phosphor Y2SiO5:Ce,Tb. Opt. Mater. (Amst). 2007, 29, 1023–1028.CrossRefGoogle Scholar
  33. [33]
    Armelao, L.; Heigl, F.; Jürgensen, A.; Blyth, R. I. R.; Regier, T.; Zhou, X. T.; Sham, T. K. X-ray excited optical luminescence studies of ZnO and Eu-doped ZnO nanostructures. J. Phys. Chem. C 2007, 111, 10194–10200.CrossRefGoogle Scholar
  34. [34]
    Trans-1-(2'-methoxyvinyl)pyrene. http://products.invitrogen. com/ivgn/product/M7913 (accessed Dec 24, 2014).Google Scholar
  35. [35]
    Kascakova, S.; Refregiers, M.; Jancura, D.; Sureau, F.; Maurizot, J. C.; Miskovsky, P. High level of low-density lipoprotein receptors enhance hypericin uptake by U-87 MG cells in the presence of LDL. Photochem. Photobiol. 2005, 81, 1395–1403.CrossRefGoogle Scholar
  36. [36]
    Giuliani, A.; Jamme, F.; Rouam, V.; Wien, F.; Giorgetta, J. L.; Lagarde, B.; Chubar, O.; Bac, S.; Yao, I.; Rey, S. et al. DISCO: A low-energy multipurpose beamline at synchrotron SOLEIL. J. Synchrotron Radiat. 2009, 16, 835–841.CrossRefGoogle Scholar
  37. [37]
    Jamme, F.; Villette, S.; Giuliani, A.; Rouam, V.; Wien, F.; Lagarde, B.; Réfrégiers, M. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues. Microsc. Microanal. 2010, 16, 507–514.CrossRefGoogle Scholar
  38. [38]
    Edelstein, A.; Amodaj, N.; Hoover, K.; Vale, R.; Stuurman, N. Computer control of microscopes using micromanager. Curr. Protoc. Mol. Biol. 2010, 92, 14.20.1–14.20.17.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Slávka Kaščáková
    • 1
    • 2
  • Alexandre Giuliani
    • 1
    • 3
  • Sara Lacerda
    • 4
  • Agnès Pallier
    • 4
  • Pascal Mercère
    • 1
  • Éva Tóth
    • 4
  • Matthieu Réfrégiers
    • 1
    Email author
  1. 1.Synchrotron SOLEILL’Orme des MerisiersGif-sur-YvetteFrance
  2. 2.UMR-S1193Université Paris-Sud XIVillejuifFrance
  3. 3.UAR1008 Caractérisation et Élaboration des Produits Issus de l’AgricultureINRANantesFrance
  4. 4.Centre de Biophysique MoléculaireCNRSOrléans Cedex 2France

Personalised recommendations