Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.
Article
Google Scholar
Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795.
Article
Google Scholar
Nima, Z. A.; Mahmood, M.; Xu, Y.; Mustafa, T.; Watanabe, F.; Nedosekin, D. A.; Juratli, M. A.; Fahmi, T.; Galanzha, E. I. et al. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci. Rep. 2014, 4, 4752.
Article
Google Scholar
Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res. 2014, 7, 1177–1187.
Article
Google Scholar
You, H. J.; Ji, Y. T.; Wang, L.; Yang, S. C.; Yang, Z. M.; Fang, J. X.; Song, X. P.; Ding, B. J. Interface synthesis of gold mesocrystals with highly roughened surfaces for surfaceenhanced Raman spectroscopy. J. Mater. Chem. 2012, 22, 1998–2006.
Article
Google Scholar
Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006–5013.
Article
Google Scholar
Pechárroman, C.; Pérez-Juste, J.; Mata-Osoro, G.; Liz-Marzán, L. M.; Mulvaney, P. Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. Phys. Rev. B
2008, 77, 035418.
Article
Google Scholar
Rodríguez-Fernández, J.; Funston, A. M.; Perez-Juste, J.; álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Mulvaney, P. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009, 11, 5909–5914.
Article
Google Scholar
Bakr, O. M.; Wunsch, B. H.; Stellacci, F. High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem. Mater. 2006, 18, 3297–3301.
Article
Google Scholar
Wang, H.; Halas, N. J. Mesoscopic Au “meatball” particles. Adv. Mater. 2008, 20, 820–825.
Article
Google Scholar
Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.; Xu, H. X. Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Adv. Mater. 2009, 21, 4614–4618.
Article
Google Scholar
Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5’-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.
Article
Google Scholar
Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.
Article
Google Scholar
Tang, H. B.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Li, Z. B.; Zhang, Z.; Zhang, Y. Urchin-like Aunanoparticles@ Ag-nanohemisphere arrays as active SERSsubstrates for recognition of PCBs. RSC Adv. 2014, 4, 19654–19657.
Article
Google Scholar
Wang, J.; Huang, L. Q.; Yuan, L.; Zhao, L. H.; Feng, X. H.; Zhang, W. W.; Zhai, L. P.; Zhu, J. Silver nanostructure arrays abundant in sub-5nm gaps as highly Raman-enhancing substrates. Appl. Surf. Sci. 2012, 258, 3519–3523.
Article
Google Scholar
Jaakkola, J. J. K.; Ieromnimon, A.; Jaakkola, M. S. Interior surface materials and asthma in adults: A population-based incident case-control study. Am. J. Epidemiol. 2006, 164, 742–749.
Article
Google Scholar
Yanagisawa, R.; Takano, H.; Inoue, K. I.; Koike, E.; Sadakane, K.; Ichinose, T. Effects of maternal exposure to di-(2-ethylhexyl) phthalate during fetal and/or neonatal periods on atopic dermatitis in male offspring. Environ. Health Persp. 2008, 116, 1136–1141.
Article
Google Scholar
Kolarik, B.; Naydenov, K.; Larsson, M.; Bornehag, C. G.; Sundell, J. The association between phthalates in dust and allergic diseases among bulgarian children. Environ. Health Persp. 2008, 116, 98–103.
Article
Google Scholar
Zheng, T. Z.; Holford, T. R.; Tessari, J.; Mayne, S. T.; Owens, P. H.; Ward, B.; Carter, D.; Boyle, P.; Dubrow, R.; Archibeque-Engle, S. et al. Breast cancer risk associated with congeners of polychlorinated biphenyls. Am. J. Epidemiol. 2000, 152, 50–58.
Article
Google Scholar
Rylander, L.; Strömberg, U.; Dyremark, E.; Östman, C.; Nilsson-Ehle, P.; Hagmar, L. Polychlorinated biphenyls in blood plasma among swedish female fish consumers in relation to low birth weight. Am. J. Epidemiol. 1998, 147, 493–502.
Article
Google Scholar
Daniels, J. L.; Longnecker, M. P.; Klebanoff, M. A.; Gray, K. A.; Brock, J. W.; Zhou, H. B.; Chen, Z.; Needham, L. L. Prenatal exposure to low-level polychlorinated biphenyls in relation to mental and motor development at 8 months. Am. J. Epidemiol. 2003, 157, 485–492.
Article
Google Scholar
Zhou, Q.; Yang, Y.; Ni, J. E.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.
Article
Google Scholar
Li, Y. B.; Zheng, M. J.; Ma, L.; Shen, W. Z. Fabrication of highly ordered nanoporous alumina films by stable highfield anodization. Nanotechnology
2006, 17, 5101.
Article
Google Scholar
Choi, J.; Luo, Y.; Wehrspohn, R. B.; Hillebrand, R.; Schilling, J.; Gösele, U. Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 2003, 94, 4757–4762.
Article
Google Scholar
Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gösele, U. Self-ordering regimes of porous alumina: The 10 porosity rule. Nano Lett. 2002, 2, 677–680.
Article
Google Scholar
Li, Z. B.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Zhang, Z.; Li, X. D. Galvanic-cell-induced growth of Ag nanosheetassembled structures as sensitive and reproducible SERS substrates. Chem.—Eur. J. 2012, 18, 14948–14953.
Article
Google Scholar
Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Agnanosheet grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale
2014, 6, 4781–4788.
Article
Google Scholar
Duan, G. T.; Cai, W. P.; Luo, Y. Y.; Li, Y.; Lei, Y. Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering. Appl. Phys. Lett. 2006, 89, 181918.
Article
Google Scholar
Zhang, X.; Zhou, Q.; Wang, W. P.; Shen, L.; Li, Z. C.; Zhang, Z. J. Latticing vertically aligned Ag nanorods to enhance its SERS sensitivity. Mater. Res. Bull. 2012, 47, 921–924.
Article
Google Scholar
Zhang, X.; Zhou, Q.; Ni, J.; Li, Z. C.; Zhang, Z. J. Surfaceenhanced Raman scattering from a hexagonal lattice of micro-patterns of vertically aligned Ag nanorods. Physica E
2011, 44, 460–463.
Article
Google Scholar
Cai, Q.; Lu, S. K.; Liao, F.; Li, Y. Q.; Ma, S. Z.; Shao, M. W. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale
2014, 6, 8117–8123.
Article
Google Scholar
Lee, J.; Seo, J.; Kim, D.; Shin, S.; Lee, S.; Mahata, C.; Lee, H. S.; Min, B. W.; Lee, T. Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates. ACS Appl. Mater. Inter. 2014, 6, 9053–9060.
Article
Google Scholar
Huang, G. L.; Sun, H. W.; Song, Z. H. Interactions between dibutyl phthalate and aquatic organisms. B. Environ. Contam. Tox. 1999, 63, 759–765.
Article
Google Scholar
Mylchreest, E.; Cattley, R. C.; Foster, P. M. D. Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: An antiandrogenic mechanism? Toxicol. Sci. 1998, 43, 47–60.
Article
Google Scholar
Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhu, C. H.; Zhang, Z. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. J. Raman Spectrosc. 2013, 44, 240–246.
Article
Google Scholar
Hou, C.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Chen, B.; Sun, K. X. Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs. Chem. Commun. 2014, 50, 569–571.
Article
Google Scholar
Chen, B.; Meng, G. W.; Huang, Q.; Huang, Z. L.; Xu, Q. L.; Zhu, C. H.; Qian, Y. W.; Ding, Y. Green synthesis of largescale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Appl. Mater. Inter. 2014, 6, 15667–15675.
Article
Google Scholar