Skip to main content
Log in

Uniform single-layer graphene growth on recyclable tungsten foils

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To meet the rising demand of graphene in electronics and optoelectronics, developing an efficient synthesis strategy for effective control of the layer thickness is highly necessary. Herein, we report the synthesis of strictly single-layer graphene on the foil of an early transition metal, tungsten (W), via a simple chemical vapor deposition route. The cracking of hydrocarbons is facilitated by the catalytically active metal surface of W, while the subsequent two-dimensional growth is mediated by the carbide-forming ability within the underlying bulk, leading to the formation of uniform monolayer graphene. The as-grown graphene layers can be transferred onto target substrates rapidly through the recently developed electrochemical method, which also allows for reuse of the substrates at least five times without introducing quality deterioration. Moreover, considering the refractory nature of W foils, a complementary component of nickel is added, by means of which the growth temperature of graphene can be significantly reduced. In brief, a highly-efficient and low-cost synthesis route has been developed for the growth of graphene towards large-area uniformity, single-layer thickness and high crystalline quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  3. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  4. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564–589.

    Article  Google Scholar 

  5. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  6. Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 2010, 1, 3101–3107.

    Article  Google Scholar 

  7. Iwasaki, T.; Park, H. J.; Konuma, M.; Lee, D. S.; Smet, J. H.; Starke, U. Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett. 2011, 11, 79–84.

    Article  Google Scholar 

  8. Liu, X.; Fu, L.; Liu, N.; Gao, T.; Zhang, Y. F.; Liao, L.; Liu, Z. F. Segregation growth of graphene on Cu-Ni alloy for precise layer control. J. Phys. Chem. C 2011, 115, 11976–11982.

    Article  Google Scholar 

  9. Weatherup, R. S.; Bayer, B. C.; Blume, R.; Ducati, C.; Baehtz, C.; Schloegl, R.; Hofmann, S. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 2011, 11, 4154–4160.

    Article  Google Scholar 

  10. Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522–527.

    Article  Google Scholar 

  11. Lee, S.; Lee, K.; Zhong, Z. H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 2010, 10, 4702–4707.

    Article  Google Scholar 

  12. Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011, 11, 1106–1110.

    Article  Google Scholar 

  13. Liu, L.; Zhou, H.; Cheng, R.; Yu, W. J.; Liu, Y.; Chen, Y.; Shaw, J.; Zhong, X.; Huang, Y.; Duan, X. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 2012, 6, 8241–8249.

    Article  Google Scholar 

  14. Sun, Z. Z.; Raji, A.-R. O.; Zhu, Y.; Xiang, C. S.; Yan, Z.; Kittrel, C.; Samuel, E. L. G.; Tour, J. M. Large-area bernal-stacked bi-, tri-, and tetralayer graphene. ACS Nano 2012, 6, 9790–9796.

    Article  Google Scholar 

  15. Zou, Z. Y.; Fu, L.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett. 2014, 14, 3832–3839.

    Article  Google Scholar 

  16. Katoh, M.; Kawarada, H. Heteroepitaxial growth of tungsten carbide films on W(110) by plasma-enhanced chemical-vapor-deposition. Jpn. J. Appl. Phys. 1995, 34, 3628–3630.

    Article  Google Scholar 

  17. Stefan, P. M.; Shek, M. L.; Lindau, I.; Spicer, W. E.; Johansson, L. I.; Herman, F.; Kasowski, R. V.; Brogen, G. Photoemission study of WC(0001). Phys. Rev. B 1984, 29, 5423–5444.

    Article  Google Scholar 

  18. Wang, Y.; Zheng, Y.; Xu, X. F.; Dubuisson, E.; Bao, Q. L.; Lu, J.; Loh, K. P. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927–9933.

    Article  Google Scholar 

  19. Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M.; et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699–705.

    Article  Google Scholar 

  20. Cancado, L. G.; Jorio, A.; Martins Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

    Article  Google Scholar 

  21. Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  Google Scholar 

  22. Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93.

    Google Scholar 

  23. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  Google Scholar 

  24. Kimmel, Y. C.; Esposito, D. V.; Birkmire, R. W.; Chen, J. G. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. Inter. J. Hydrogen Energy 2012, 37, 3019–3024.

    Article  Google Scholar 

  25. Yan, Y.; Xia, B.; Qi, X.; Wang, H.; Xu, R.; Wang, J.-Y.; Zhang, H.; Wang, X. Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. Chem. Commun. 2013, 49, 4884–4886.

    Article  Google Scholar 

  26. Dai, Y. N. Binary Alloy Phase Diagrams; Science Press of China: Beijing, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Zhang or Zhongfan Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Song, X., Chen, K. et al. Uniform single-layer graphene growth on recyclable tungsten foils. Nano Res. 8, 592–599 (2015). https://doi.org/10.1007/s12274-015-0727-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0727-9

Keywords

Navigation