Nano Research

, Volume 8, Issue 6, pp 1956–1963 | Cite as

Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement

  • A. ChiolerioEmail author
  • I. Roppolo
  • V. Cauda
  • M. Crepaldi
  • S. Bocchini
  • K. Bejtka
  • A. Verna
  • C. F. Pirri
Research Article


By using two separate components, mem-sensing devices can be fabricated combining the sensitivity of a transducer with non-volatile memory. Here, we discuss how a mem-sensor can be fabricated using a single material with built-in sensing andmemory capabilities, based on ZnO microwires (MWs) embedded in a photocurable resin and processed from liquid by vertically aligning the MWs across the polymeric matrix using dielectrophoresis. This results in an ultraviolet (UV) photodetector, a device that is widely applied in fields such as telecommunication, health, and defense, and has so far implemented using bulk inorganic semiconductors. However, inorganic detectors suffer from very high production costs, brittleness, huge equipment requirements, and low responsivity. Here, we propose for the first time aneasy processable, reproducible, and low-cost hybrid UV mem-sensor. Composites with aligned ZnO MWs produce giant photocurrentscompared to the same composites with randomly distributed MWs. In particular, we efficiently exploit a mem-response where the photocurrent carries memory of the last electronic state experienced by the device when under testing. Furthermore, we demonstrate the non-equivalence of different wave profiles used during thedielectrophoresis: a pulsed wave is able to induce order in both the axis and the orientation of the MWs, whereas a sine wave only affects the orientation.


giantphotocurrent mem-sensors ZnO photopolimerization dielectrophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_705_MOESM1_ESM.pdf (3.8 mb)
Supplementary material, approximately 3.77 MB.


  1. [1]
    Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. -E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.CrossRefGoogle Scholar
  2. [2]
    Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. -J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.CrossRefGoogle Scholar
  3. [3]
    Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826.CrossRefGoogle Scholar
  4. [4]
    Wilson, S. A.; Jourdain, R. P. J.; Zhang, Q.; Dorey, R. A.; Bowen, C. R.; Willander, M.; UlWahab, Q.; Al-hilli, S. M.; Nur, O. et al. New materials for micro-scale sensors and actuators: An engineering review. Mat. Sci. Eng.: R: Reports 2007, 56, 1–129.CrossRefGoogle Scholar
  5. [5]
    Bahnemann, D. W.; Kormann, C.; Hoffmann, M. R. Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 1987, 91, 3789–3798.CrossRefGoogle Scholar
  6. [6]
    Gomez, J. L.; Tigli, O. Zinc oxide nanostructures: From growth to application. J. Mater. Sci. 2013, 48, 612–624.CrossRefGoogle Scholar
  7. [7]
    Xu, S.; Wang, Z. L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098.CrossRefGoogle Scholar
  8. [8]
    Cauda, V.; Gazia, R.; Porro, S.; Stassi, S.; Canavese, G.; Roppolo, I.; Chiolerio, A. Nanostructured ZnO materials: Synthesis, properties and applications.In Handbook of Nanomaterial Properties. Bhushan, B.; Luo, D.; Schricker, S. R.; Sigmund, W.; Zauscher, S., Eds.; Springer: Berlin, 2014; pp 137–177.CrossRefGoogle Scholar
  9. [9]
    Ottone, C.; Stassi, S.; Motto, P.; Laurenti, M.; Demarchi, D.; Cauda, V. ZnO nanowires: Synthesis approaches and electrical properties. In Nanowires: Synthesis, Electrical Properties and Uses in Biological Systems. Wilson, L. J., Eds.; Nova Science Publishers: New York, 2014; pp 1–58.Google Scholar
  10. [10]
    Espinosa, H. D.; Bernal, R. A.; Minary-Jolandan, M. A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 2012, 24, 4656–4675.CrossRefGoogle Scholar
  11. [11]
    Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C. F. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167.CrossRefGoogle Scholar
  12. [12]
    Zhang, Y.; Yan, X.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotroniceffect in ZnOnanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  13. [13]
    Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.CrossRefGoogle Scholar
  14. [14]
    Xu, S. G.; Guo, W. H.; Du, S. W.; Loy, M. M. T.; Wang, N. Piezotroniceffects on the optical properties of ZnO nanowires. Nano Lett. 2012, 12, 5802–5807.CrossRefGoogle Scholar
  15. [15]
    Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.CrossRefGoogle Scholar
  16. [16]
    He, Y. N.; Zhang, W.; Zhang, S. C.; Kang, X.; Peng, W. B.; Xu, Y. L. Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array. Sens. Actuators, A 2012, 181, 6–12.CrossRefGoogle Scholar
  17. [17]
    Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectorsbased on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649–1653.CrossRefGoogle Scholar
  18. [18]
    Lao, C. S.; Park, M. -C.; Kuang, Q.; Deng, Y. L.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J. Am. Chem. Soc. 2007, 129, 12096–12097.CrossRefGoogle Scholar
  19. [19]
    Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802.CrossRefGoogle Scholar
  20. [20]
    Wang, D. Q.; Zhu, R.; Zhou, Z. Y.; Ye, X. Y. Controlled assembly of zinc oxide nanowires using dielectrophoresis. Appl. Phys. Lett. 2007, 90, 103110.CrossRefGoogle Scholar
  21. [21]
    Kwok, H. L. Modeling negative capacitance effect in organic polymers. Solid-State Electron. 2003, 47, 1089–1093.CrossRefGoogle Scholar
  22. [22]
    Bocchini, S.; Chiolerio, A.; Porro, S.; Accardo, D.; Garino, N.; Bejtka, K.; Perrone, D.; Pirri, C. F. Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. J. Mater. Chem. C 2013, 1, 5101–5109.CrossRefGoogle Scholar
  23. [23]
    Chiolerio, A.; Bocchini, S.; Porro, S. Inkjet printed negative supercapacitors: Synthesis of polyaniline-based inks, doping agent effect, and advanced electronic devices applications. Adv. Funct. Mater. 2014, 24, 3375–3383.CrossRefGoogle Scholar
  24. [24]
    Son, D. I.; You, C. H.; Kim, W. T.; Jung, J. H.; Kim, T. W. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 2009, 94, 132103.CrossRefGoogle Scholar
  25. [25]
    Son, D. I.; You, C. H.; Jung, J. H.; Kim, T. W. Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 2010, 97, 013304.Google Scholar
  26. [26]
    Sah, M. P.; Hyongsuk, K.; Chua, L. O. Brains are made of memristors. IEEE Circuits and Systems Magazine 2014, 14, 12–36.CrossRefGoogle Scholar
  27. [27]
    Fan, Z.; Fan, X. D.; Li, A.; Dong, L. X. Nanorobotic in situ characterization of nanowires memristors and “memsensing”. In IEEE/RSJ International Conference on Intelligent Robots and Systems (BS2013), Tokyo, Japan, 2013, pp 1028–1033.Google Scholar
  28. [28]
    Wang, X. B.; Chen, Y. R.; Gu, Y.; Li, H. Spintronicmemristortemperature sensor. IEEE Electron Device Lett. 2010, 31, 20–22.CrossRefGoogle Scholar
  29. [29]
    Yang, Y.; Guo, W.; Pradel, K. C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z. L. Pyroelectricnanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Chiolerio
    • 1
    Email author
  • I. Roppolo
    • 1
  • V. Cauda
    • 1
  • M. Crepaldi
    • 1
  • S. Bocchini
    • 1
  • K. Bejtka
    • 1
  • A. Verna
    • 1
  • C. F. Pirri
    • 1
  1. 1.Center for Space Human RoboticsIstitutoItaliano di TecnologiaTorinoItaly

Personalised recommendations