Skip to main content

How toxic are gold nanoparticles? The state-of-the-art

Abstract

With the growing interest in the applications of gold nanoparticles in biotechnology and their physiological effects, possible toxicity of gold nanoparticles is becoming an increasingly important issue. A large number of studies carried out over the past few years under a variety of experimental conditions and following different protocols have produced conflicting results, leading to divergent views about the actual safety of gold nanoparticles in human applications.

This work is intended to provide an overview of the most recent experimental results and thereby summarize current state-of-the-art. Rather than presenting a comprehensive review of the available literature in this field, which would be impractically broad, we have selected representative examples of both in vivo and in vitro studies, which clearly demonstrate the need for urgent and rigorous standardization of experimental protocols. Despite their significant potential, the safety of gold nanoparticles is highly controversial at this time, and important concerns have been raised that need to be properly addressed. Factors such as shape, size, surface charge, coating, and surface functionalization are expected to influence the interactions of particles with biological systems to a different extent, resulting in different outcomes and influencing the potential of gold nanoparticles for biomedical applications.

Moreover, despite continuous attempts to establish a correlation between structure of the particles and their interactions with biological systems, we are still far from elucidating the toxicological profile of gold nanoparticles in an indisputable manner. This review is intended to contribute towards this goal, offering a number of suggestions on how to achieve the systematization of data on the most relevant physico-chemical parameters, which govern and control the toxicity of gold nanoparticles at cellular and whole-organism levels.

This is a preview of subscription content, access via your institution.

References

  1. Timbrell, J. A. Biomarkers in toxicology. Toxicology 1998, 129, 1–12.

    Google Scholar 

  2. Schmid, O.; Möller, W.; Semmler-Behnke, M.; Ferron, G. A.; Karg, E.; Lipka, J.; Schulz, H.; Kreyling, W. G.; Stoeger, T. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 2009, 14, 67–73.

    Google Scholar 

  3. Grass, R. N.; Limbach, L. K.; Athanassiou, E. K.; Stark, W. J. Exposure of aerosols and nanoparticle dispersions to in vitro cell cultures: A review on the dose relevance of size, mass, surface and concentration. J. Aerosol Sci. 2010, 41, 1123–1142.

    Google Scholar 

  4. Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug. Delivery Rev. 2008, 60, 1307–1315.

    Google Scholar 

  5. Eck, W.; Nicholson, A. I.; Zentgraf, H.; Semler, W.; Bartling S. N. Anti-cd4-targeted gold nanoparticles induce specific contrast enhancement on peripheral lymphonodes in x-ray computed tomography in live mice. Nano Lett. 2010, 10, 2318–2322.

    Google Scholar 

  6. Bhattacharya, R.; Mukherjee, P. Biological properties of “naked” metal nanoparticles. Adv. Drug. Delivery Rev. 2008, 60, 1289–1306.

    Google Scholar 

  7. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.

    Google Scholar 

  8. Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469–478.

    Google Scholar 

  9. Patra, H. K.; Banerjee, S.; Chaudhuri, U.; Lahiri, P.; Dasgupta, A. K. Cell selective response to gold nanoparticles. Nanomedicine 2007, 3, 111–119.

    Google Scholar 

  10. Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyad, R.; Kuten, R.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673.

    Google Scholar 

  11. Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.

    Google Scholar 

  12. Zhang, X. D.; Guo, M. L.; Wu, H. Y.; Sun, Y. M.; Ding, Y. Q.; Feng, X.; Zhang, L. A. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int. J. Nanomedicine 2009, 4, 165–173.

    Google Scholar 

  13. Sung, J. H.; Ji, J. H.; Park, J. D.; Song, M. Y.; Song, K. S.; Ryu, H. R.; Yoon, J. U.; Jeon, K. S.; Jeong, J.; Han, B. S. et al. Subchronic inhalation toxicity of gold nanoparticles. Part. Fibre Toxicol. 2011, 8, 16.

    Google Scholar 

  14. Villiers, C. L.; Freitas, H.; Couderc, R.; Villiers, M. B.; Marche, P. N. Analysis of the toxicity of gold nano particles on the immune system: Effect on dendritic cell functions. J. Nanopart. Res. 2010, 12, 55–60.

    Google Scholar 

  15. Sabella, S.; Galeone, A.; Vecchio, G.; Cingolani, R.; Pompa, P. P. AuNPs are toxic in vitro and in vivo: A review. J. Nanosci. Lett. 2011, 1, 145–165.

    Google Scholar 

  16. Wang, S.; Lawson, R.; Ray, P. C.; Yu, H. Toxic effects of gold nanoparticles on salmonella typhimurium bacteria. Toxicol. Ind. Health 2011, 27, 0748233710393395.

    Google Scholar 

  17. Zhou, M.; Wang, B. X.; Rozynek, Z.; Xie, Z.; H. Fossum, J. O.; Yu, X. F.; Raaen, S. Minute synthesis of extremely stable gold nanoparticles. Nanotechnology 2009, 20, 505606.

    Google Scholar 

  18. Kanduc, D.; Mittelman, A.; Serpico, R.; Sinigaglia, E.; Sinha, A. A.; Natale, C.; Santacroce, R.; Di Corcia, M. G.; Lucchese, A.; Dini, L. et al. Cell death: Apoptosis versus necrosis (review). Int. J. Oncol. 2002, 21, 165–170.

    Google Scholar 

  19. Pompa, P. P.; Vecchio, G.; Galeone, A.; Brunetti, V.; Maiorano, G.; Sabella, S.; Cingolani, R. Physical assessment of toxicology at nanoscale: Nano dose-metrics and toxicity factor. Nanoscale 2011, 3, 2889–2897.

    Google Scholar 

  20. Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.

    Google Scholar 

  21. Yah, C. S. The toxicity of gold nanoparticles in relation to their physicochemical properties. Biomed. Res. 2013, 24, 400–413.

    Google Scholar 

  22. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmon properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Google Scholar 

  23. Aillon, K. L.; Xie, Y.; El-Gendy, N.; Berkland, C. J.; Forrest, M. L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Delivery Rev. 2009, 61, 457–466.

    Google Scholar 

  24. Khlebtsov, N; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Google Scholar 

  25. Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.

    Google Scholar 

  26. Pelley, J. L.; Daar, A. S.; Saner, M. A. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol. Sci. 2009, 112, kfp188.

    Google Scholar 

  27. Maurer-Jones, M. A.; Bantz, K. C.; Love, S. A.; Marquis, B. J.; Haynes, C. L. Toxicity of therapeutic nanoparticles. Nanomedicine 2009, 4, 219–241.

    Google Scholar 

  28. Hussain, S. M.; Braydich-Stolle, L. K.; Schrand, A. M.; Murdock, K. O.; Yu, R. C.; Mattie, D. M.; Schlager, J. J.; Terrones, M. Toxicity evaluation for safe use of nanomaterials: Recent achievements and technical challenges. Adv. Mater. 2009, 21, 1549–1559.

    Google Scholar 

  29. Fadeel B.; Garcia-Bennett, A. E. Better safe than sorry: Understanding properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Delivery Rev. 2010, 62, 362–374.

    Google Scholar 

  30. Johnston, H. J.; Hutchison, G.; Christensen, F. M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of silver and gold nanoparticles: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 2010, 40, 328–346.

    Google Scholar 

  31. Soenen, S. J.; Rivera-Gil, P.; Montenegro, J. M.; Parak, W. J.; De Smedt, S. C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446–465.

    Google Scholar 

  32. Rausch, K.; Reuter, A.; Fischer, K.; Schmidt, M. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 2010, 11, 2836–2839.

    Google Scholar 

  33. Cui, W. J.; Li, J. R.; Zhang, Y. K.; Rong, H. L.; Lu, W. S.; Jiang, L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine: NBM 2012, 8, 46–53.

    Google Scholar 

  34. Pan, Y.; Neuss, S.; Leifert, A.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949.

    Google Scholar 

  35. Fratoddi, I.; Venditti, I.; Cametti, C.; Palocci, C.; Chronopoulou, L.; Marino, M.; Acconcia, F.; Russo, M. V. Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf., B 2012, 93, 59–66.

    Google Scholar 

  36. Shukla, S.; Priscilla, A.; Banerjee, M.; Bhonde, R. R.; Ghatak, J.; Satyam, P. V. Porous gold nanospheres by controlled transmetalation reaction: A novel material for application in cell imaging. Chem. Mater. 2005, 17, 5000–5005.

    Google Scholar 

  37. Railsback, J. G.; Singh, A.; Pearce, R. C.; McNight, T. E.; Collazo, R.; Sitar, Z.; Yingling, Y. G.; Melechko, A. V. Weakly charged cationic nanoparticles induce DNA bending and strand separation. Adv. Mater. 2012, 24, 4261–4265.

    Google Scholar 

  38. Paillusson, F.; Dahirel, V.; Jardat, M.; Victor, J. M.; Barbo, M. Effective interaction between charged nanoparticles and DNA. Phys. Chem. Chem. Phys. 2011, 13, 12603–12613.

    Google Scholar 

  39. Poulos, A. S.; Constantin, D.; Davidson, P.; Impéror-Clerc, M.; Pansu, B.; Rouzière, S. The interaction of charged nanoparticles at interfaces. EPL 2012, 100, 18002.

    Google Scholar 

  40. Huang, X. L.; Zhang, B.; Ren, L.; Ye, S. F.; Sun, L. P.; Zhang, Q. Q.; Tan, N. C.; Chow, G. M. In vivo toxic studies and biodistribution of near infrared sensitive Au-AuS nanoparticles as potential drug delivery carriers. J. Mat. Sci.: Mater. Med. 2008, 19, 2581–2588.

    Google Scholar 

  41. Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M. Gold nanoparticles: A new x-ray contrast agent. Br. J. Radiol. 2006. 79, 248–253

    Google Scholar 

  42. Gerber, A.; Bundschud, M.; Klingelhofer, D.; Groneberg, D. A. Gold nanoparticles: Recent aspects for human toxicology. J. Occup. Med. Toxicol. 2013, 8, 32.

    Google Scholar 

  43. Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    Google Scholar 

  44. Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. J. Mater. Chem. B 2014, 2, 4204–4220.

    Google Scholar 

  45. Fratoddi, I.; Panziera, N.; Pertici, P.; Martra, G.; Bertinetti, L.; Russo, M. V. Nanostructured gold/conjugated polymer hybrids: Preparation, chemical structure and morphology. Mater. Sci. Engin., C 2007, 27, 1305–1308.

    Google Scholar 

  46. Vitale, F.; Piscopiello, E.; Pellegrini, G.; Fratoddi, I.; Russo, M. V.; Tapfer, L.; Mazzoldi, P. Gold nanoclusters-organometallic polymer nanocomposite: Synthesis and characterization. Mater. Sci. Engin,. C 2007, 27, 1300–1304.

    Google Scholar 

  47. Vitale, F.; Vitaliano, R.; Battocchio, C.; Fratoddi, I.; Piscopiello, E.; Tapfer, L.; Russo, M. V. Synthesis and characterization of gold nanoparticles stabilized by palladium (II) phosphine thiol. J. Organomet. Chem. 2008, 693, 1043–1048.

    Google Scholar 

  48. Vitale, F.; Vitaliano, R.; Battocchio, C.; Fratoddi, I.; Giannini, C.; Piscopiello, E.; Guagliardi, A.; Cervellino, A.; Polzonetti, G.; Russo, M. V. et al. Synthesis and microstructural investigations of organometallic Pd(II) thiol-gold nano-particles. Nanoscale Res. Lett. 2008, 3, 461–467.

    Google Scholar 

  49. Fratoddi, I.; Venditti, I.; Russo, M. V. Breackthroughs for gold nanoparticles:, volume chap. 13. Nova Science Publisher, Inc. NY, 2010. ISBN: 978-1-61668-009-1.

    Google Scholar 

  50. Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M. V. Core-shell hybrids based on noble metal nanoparticles and conjugated polymers: Synthesis and characterization. Nanoscale Res. Lett. 2011, 6, 98.

    Google Scholar 

  51. Cametti, C.; Fratoddi, I.; Venditti, I.; Russo, M. V. Dielectric relaxations of thiol-coated noble metal nanoparticles in aqueous solutions. electrical characterization of the interface. Langmuir, 2011, 27, 7084–7090.

    Google Scholar 

  52. Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Bondino, F.; Malvestuto, M.; Piscopiello, E.; Tapfer, L.; Russo, M. V. Gold nanoparticle dyads stabilized with binuclear Pt(II) dithiol bridges. J. Phys. Chem. C 2011, 115, 15198–15204.

    Google Scholar 

  53. Fratoddi, I.; Battocchio, C.; Polzonetti, G.; Sciubba, F.; Delfini, M.; Russo, M. V. A porphyrin bridged Pd dimer complex stabilizes gold nanoparticles. Eur. J. Inorg. Chem. 2011, 4906–4913.

    Google Scholar 

  54. Quintiliani, M.; Bassetti, M.; Pasquini, C.; Battocchio, C.; Possi, M.; Mura, F.; Matassa, R.; Fontana, L.; Russo, M. V.; Fratoddi, I. Network assembly of gold nanoparticles linked through fluorenyl dithiol bridge. J. Mater. Chem. C 2014, 2, 2517–2527.

    Google Scholar 

  55. Venditti, I.; Fontana, L.; Fratoddi, I.; Battocchio, C.; Cametti, C.; Sennato, S.; Mura, F.; Sciubba, F.; Delfini, M.; Russo, M. V. Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: Loading and release study. J. Colloid Interf. Sci. 2014, 418, 52–60.

    Google Scholar 

  56. Battocchio, C.; Fratoddi, I.; Venditti, I.; Yarzhemsky, V. G.; Norov, Y. V.; Russo, M. V.; Polzonetti, G. Exafs in total refelexion (reflexafs) for the study of organometallic Pd(II) thiol complexes based self-assembled monolayers on gold. Chem. Phys. 2011, 379, 92–98.

    Google Scholar 

  57. Cedervall, T.; Lynch, I.; Foy, M.; Berggard, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5754–5756.

    Google Scholar 

  58. Lynch, I.; Cedervall, T.; Lundqvist, M.; Cabaleiro-Lago, C.; Linse, S.; Dawson, K. A. The nanoparticle-protein complex as a biological entity; A complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci. 2007, 134-135, 167–174.

    Google Scholar 

  59. Lynch I.; Dawson, K. A. Protein-nanoparticle interactions. Nano Today, 2008, 3, 40–47.

    Google Scholar 

  60. Casals, E.; Pfaller, T.; Duschl, A.; Oosting, G. J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010, 4, 3623–3632.

    Google Scholar 

  61. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bandelli-Bombelli, F.; Dawson, K. A. Physical-chemical aspects of the protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–3534.

    Google Scholar 

  62. Perdonet, N.; Fang, X.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovih, M. Adverse effects of citrate-gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766–773.

    Google Scholar 

  63. Rivera Gil, P.; Huhn, D.; del Mercato, L. L.; Sasse, D.; Parak, W. J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res. 2010, 62, 115125.

    Google Scholar 

  64. Chitharani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and the shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

    Google Scholar 

  65. Murphy, C. J.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.

    Google Scholar 

  66. De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J. A. M.; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticlesafter intravenous injection. Biomaterials 2008, 29, 1912–1919.

    Google Scholar 

  67. Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf., B 2008, 66, 274–280.

    Google Scholar 

  68. Abdel Halim, M. A. The influence of size and exposure duration of gold nanoparticles on gold nanoparticle levels in several rat organs in vivo. J. Cell Sci. Ther. 2012, 3, 1000129.

    Google Scholar 

  69. Pompa, P. P.; Vecchio, G.; Galeone, A.; Brunetti, V.; Sabella, S.; Maiorano, G.; Falqui, A.; Bertoni, G.; Congolani, R. In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res. 2011, 4, 405–413.

    Google Scholar 

  70. Simpson, C. A.; Salleng, K. J.; Cliffel, D. E.; Feldheim, D. L. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine: NBM 2013, 9, 257–263.

    Google Scholar 

  71. Simpson, C. A.; Huffman, B. J.; Gerdon, A. E.; Cliffel, D. E. Unexpected toxicity of mono layer protected gold clusters eliminated by PEG-thiol place exchange reactions. Chem. Res. Toxicol. 2010, 23, 1608–1616.

    Google Scholar 

  72. Cazacu, A.; Bindar, D.; Tartau, L.; Hritcu, L.; Stefan, M.; Nita, L.; Ionescu, C.; Nica, V.; Rusu, G.; Dobromir, M. et al. Effect on nerve structures of functionalized gold-chitosan nanoparticles obtained by one pot synthesis. An. Stiint. Univ. “Alexandru Ioan Cuza” Iasi, Sect. II a: Genet. Biol. Mol. 2011, 12, 45–49.

    Google Scholar 

  73. Esumi, K.; Takei, N.; Yoshimura, T. Antioxidant potentiality of gold-chitosan nanocomposites. Colloids Surf. B 2003, 32, 117–123.

    Google Scholar 

  74. Stefan, M.; Melnig, V.; Pricop, D.; Neagu, A.; Mihasan, M.; Tartu, L. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats. Mater. Sci. Eng. C 2013, 33, 550–556.

    Google Scholar 

  75. Coradeghini, R.; Gioria, S.; Garcia, C. P.; Nativo, P.; Franchini, F.; Gilliland, D.; Ponti, J.; Rossi, F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicology Lett. 2013, 217, 205–216.

    Google Scholar 

  76. Yamada K. M.; Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007, 130, 601–610.

    Google Scholar 

  77. Lee, J.; Lilly, G. D.; Doty, R. C.; Podsiadlo, P.; Kotov, N. A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009, 5, 1213–1221.

    Google Scholar 

  78. Ponti, J.; Colognato, R.; Rauscher, H.; Gloria, S.; Broggi, F.; Franchini, F.; Pascual, C.; Guidetti, G.; Rossi, F. Colony forming efficiency and microscopy analysis of multi-well carbon nanotubes cell interactions. Toxicology Lett. 2010, 197, 29–37.

    Google Scholar 

  79. Chen, Y. S.; Hung, Y. C.; Iau, I.; Huang, G. S. Assessement of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 2009, 4, 858–864.

    Google Scholar 

  80. Sun, L. L.; Liu, D. J.; Wang, Z. X. Functional gold nanoparticle-peptide complexes as cell targeting agents. Langmuir 2008, 24, 10293–10297.

    Google Scholar 

  81. Tkachenko, A. G.; Xie, H.; Liu, Y.; Coleman, D.; Ryan, J.; Glomn, W. R.; Shipton, M. K.; Franzen, S.; Feldheim, D. L. Cellular traiectories of peptide modified gold particle complexes: Comparison of nuclear localization signals and peptide tranduction domain. Bioconjugate Chem. 2004, 15, 482–490.

    Google Scholar 

  82. Khan, J. A.; Pillai, B.; Das, T. K.; Singh, Y.; Maiti, S. Molecular effects of uptake of gold nanoparticles in hela cells. Chem. Biochem. 2007, 8, 1237–1240.

    Google Scholar 

  83. Kuo, C. W.; Lai, J. J.; Wei, K. H.; Chen, P. Studies of surface modified gold nanowires inside living cells. Adv. Funct. Mater. 2007, 17, 3707–3714.

    Google Scholar 

  84. Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Controlled Rel. 2006, 114, 343–347.

    Google Scholar 

  85. Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, S. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 2006, 22, 2–5.

    Google Scholar 

  86. Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4, 153–159.

    Google Scholar 

  87. Salmaso, S.; Caliceti, P.; Amendola, V.; Meneghetti, M.; Magnusson, J. P.; Pasparakis, G.; Alexander, C. Cell up-take control of gold nanoparticles functionalized with thermoresponsive polymers. J. Mater. Chem. 2009, 19, 1608–1615.

    Google Scholar 

  88. Qu Y. H.; Lü, X. Y. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fbroblasts fetal. Biomed. Mater. 2009, 4, 025007.

    Google Scholar 

  89. Patra, H. K.; Dasgupta, A. K. Cancer cell response to nanoparticles: Criticality and optimality. Nanomed. Nanotech. Biol. Med. 2012, 8, 842–852

    Google Scholar 

  90. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordination Chem. Rev. 2005, 249, 1870–1901.

    Google Scholar 

  91. Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small 2009, 5, 701–708.

    Google Scholar 

  92. Huff, T. B.; Hansen, M. N.; Zhao, Y.; Cheng, J. X.; Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 2007, 23, 1596–1599.

    Google Scholar 

  93. Alkilany, A. M.; Shatanawi, A.; Kurtz, T.; Caldwell, R. B.; Caldwell, R. W. Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel: Importance of surface modification. Small 2012, 8, 1270–1278.

    Google Scholar 

  94. Cortesi, R.; Esposito, E.; Menegatti, E.; Gambari, R.; Nastruzzi, C. Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried dna. Int. J. Pharm. 1996, 139, 69–78.

    Google Scholar 

  95. Mirska, D.; Schirmer, K.; Funari, S.; Langner, A.; Dobner, B.; Brezesinski, B. Biophysical and biochemical properties of a binary lipid mixture for dna transfection. Colloids Surf. B 2005, 40, 51–59.

    Google Scholar 

  96. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Prot. Natl. Acad. Sci. U.S.A. 2003, 100, 13549–13554.

    Google Scholar 

  97. Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5, 709–711.

    Google Scholar 

  98. James, W. D.; Hirsch, L. R.; West, J. L.; O’Neal, P. D.; Payne, J. D. Application of inaa to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem. 2007, 271, 455–459.

    Google Scholar 

  99. Khlebtsov, N. G.; Dykman, L. A.; Terentyuk, G. S. Iii euroasian congress on medical physics and engineering. In Moscow State Univ. Publ., editor, Med.l Phys.s 2010, 3, 209–211.

    Google Scholar 

  100. Melancon, M. P.; Lu, W.; Yang, Z.; Zhang, R.; Cheng, Z.; Elliot, A. M.; Stafford, J.; Olson, T.; Zhang, J. Z.; Li, C. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 2008, 7, 1730–1739.

    Google Scholar 

  101. Su, C. H.; Sheu, H. S.; Lin, C. Y.; Huang, C. C.; Lo, Y. W.; Pu, Y. C.; Weng, J. C.; Shieh, D. B.; Chen, J. H.; Yeh, C. S. Nanoshell magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2007, 129, 2139–2146.

    Google Scholar 

  102. Xia, Y. N; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.

    Google Scholar 

  103. Dykman, L. A.; Khlebtson, N. G. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.

    Google Scholar 

  104. Yang, X. M.; Stein, E. W.; Ashkenazi, S.; Wang, L. V. Nanoparticles for photoacoustic imaging. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2009, 1, 360–368.

    Google Scholar 

  105. Wang, Y. C.; Liu, Y. J.; Luehmann, H.; Xia, X. H.; Ean, D. H.; Cutler, C.; Xia, Y. N. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett. 2013, 13, 581–585.

    Google Scholar 

  106. Kim, C.; Cho, E. C.; Chen, J. Y.; Song, K. H.; Au, L.; Favazza, C.; Zhang, Q.; Cobley, C. M.; Gao, F.; Xia, Y. N. et al. In vivo molecular photoacustic tomography of melanomas targeted by bioconjugated gold nanogages. ACS Nano 2010, 4, 4559–4564.

    Google Scholar 

  107. Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducer for cancer treatment. Small 2010, 6, 811–817.

    Google Scholar 

  108. Au, L.; Zhang, Q.; Cobley, C. M.; Gidding, M.; Schwartz, A. G.; Chen, J. Y.; Xia, Y. N. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 2010, 4, 35–42.

    Google Scholar 

  109. Rodriguez-Lorenzo, L.; Alvarez-Puebla, R. A.; Garcia de Abajo, F. J.; Liz-Marzan, L. M. Surface enhanced raman scattering using star-shaped gold colloidal nanoparticles. J. Phys. Chem. C 2010, 114, 7336–7340.

    Google Scholar 

  110. Yuan, H.; Khoury, C. G.; Hwang, H.; Wilson, C. M.; Grant, G. A.; Vo-Dinh, T. Gold nanostars: Surfaxctant free synthesis, 3D modelling and two photon photoluminescence imaging. Nanotechnology 2012, 23, 075102.

    Google Scholar 

  111. Trigari, S.; Rindi, A.; Margheri, G.; Sottini, S.; Dellapiane, G.; Giorgetti, E. Synthesis and modelling of gold nanostars with tunable morphology and extinction spectrum. J. Mater. Chem. 2011, 21, 6531–6549.

    Google Scholar 

  112. Salinas, K.; Kereselidze, Z.; De Luna, F.; Peralta, X. G.; Santamaria, F. Transient extracellular application of nanostars increase hippocampal neuronal activity. J. Nanobiotechnology 2014, 12, 31–38.

    Google Scholar 

  113. Navarro, J. R. G.; Manchon, D.; Lerouge, F.; Blanchard, N. P.; Marotte, S.; Leverrier, J.; Marvel, J.; Chaput, F.; Micouin, G.; Gabudean, A. A. et al. Synthesis of pegylated gold nanostares and bipyramids for intracellular uptake. Nanotechnology 2012, 23, 465602.

    Google Scholar 

  114. Dam, D. H. M.; Lee, R. C.; Odom, T. W. Improved in vitro efficacy of gold nanoconstructs by increased loading of g-quadruplex aptamer. Nano Lett. 2014, 14, 2843–2848.

    Google Scholar 

  115. Dam, D. H. M.; Culver, K. S. B.; Odom, T. W. Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Mol. Pharmaceutics 2014, 11, 580–587.

    Google Scholar 

  116. Hutter, E.; Boridy, S.; Labrecque, S.; Lalancette-Hebert, M.; Kriz, J.; Winnik, F. M.; Maysinger, D. Microglial response to gold nanoparticles. ACS Nano 2010, 4, 2595–2606.

    Google Scholar 

  117. Li, W. T.; Sun, X. L.; Wang, Y.; Niu, G.; Chen, X. Y.; Qian, Z. Y.; Nie, L. M. In vivo quantitative photoacustic microscopy of gold nanostar kinetics in mouse organ. Biomed. Optics Express 2014, 5, 2679–2685.

    Google Scholar 

  118. Rivera-Gil, P.; Jamenez-de Aberasturi, D.; Wulf, V.; Pelaz, B.; Del Pino, P.; Zhao, Y.; De La Fluente, J. M.; Ruiz de Larramendi, I.; Liang, X. J.; Parak, W. J. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. 2013, 46, 743–749.

    Google Scholar 

  119. Johnston, H.; Pojana, G.; Zuin, S.; Jacobsen, N. R.; Moller, P.; Loft, S.; Semmler-Behnke, M.; McGuiness, C.; Balharry, D.; Marcomini, A. et al. Engineered nanomaterial risk. essons from completed nanotoxicology studies: Potential solutions to current and future challenges. Crit. Rev. Toxicol. 2013, 43, 1–20.

    Google Scholar 

  120. Roebben, G.; Ramirez-Garcia, S.; Hackley, V. A.; Roesslein, M.; Klaessig, F.; Kestens, V.; Lynch, I.; Garner, C. M.; Rawle, A.; Elder, A. et al. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J. Nanopart. Res. 2011, 13, 2675–2687.

    Google Scholar 

  121. Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicity: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.

    Google Scholar 

  122. Tedesco, S.; Doyle, H.; Redmond, G.; Sheehan, D. Gold nanoparticles and oxidative stress in mytilus edulis. Marine Environ. Res. 2008, 66, 131–133.

    Google Scholar 

  123. Kong, B.; Seog. J. H.; Graham, L. M.; Lee, S. B. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine, 2011, 6, 929–941.

    Google Scholar 

  124. Malugin, A.; Ghandehari, H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: A comparative study of rods and spheres. J. Appl. Toxicol. 2010, 30, 212–217.

    Google Scholar 

  125. Albanese A.; Chan, W. C. Effect of gold nanoparticles aggregation on cell uptake and toxicity. ACS Nano 2011, 5, 5478–5489.

    Google Scholar 

  126. Elsaesser, A.; Howard, C. V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 2012, 64, 129–137.

    Google Scholar 

  127. Oberdörster, G. Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. J. Intern. Med. 2010, 267, 89–105.

    Google Scholar 

  128. Oberdöster, G.; Mayriard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D. et al. Principles for charcterizing the potential human health effects from exposure to nanoparticles: Elements for a screening strategy. Part. Fibre Toxicol. 2005, 2, 8–1/35.

    Google Scholar 

  129. Elsaesser, A.; Taylor, A.; de Yanés, G. S.; McKerr, G.; Kim, E. M.; O’Hare, E.; Howard, C. V. Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine 2010, 5, 1447–1457.

    Google Scholar 

  130. Wittmaack, K. In search of the most relevant parameters for quantifying lung inflannatory response to nanoparticle exposure: Particle number, surface area or what ? Environ. Health Perspect. 2007, 115, 187–194.

    Google Scholar 

  131. Joris, F.; Manshian, B. B.; Peynshaert, K.; De Smedt, S. C.; Braeckman, K.; Soenen, S. J. Assessing nanoparticle toxicity in cell-dased assays: Influence of the cell culture parameters and optimized models for bridging the in vitro-in vivo gap. Chem. Soc. Rev. 2013, 42, 8339–8359.

    Google Scholar 

  132. Rushton, E. K.; Jiang, J.; Leonard, S. S.; Eberly, S.; Castranova, V.; Biswas, P.; Elder, A.; Han, X.; Gelein, R.; Finkelstein, J.; Oberdorster, G. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health, Part A 2010, 73, 445–461.

    Google Scholar 

  133. Gulson. B.; Wong, H. Stable isotopic tracing: A way forward for nanotoxicology. Environ. Health Perspect. 2006, 114, 1486–1488.

    Google Scholar 

  134. Wang, L. M.; Li, Y. F.; Zhou, L. J.; Liu, Y.; Meng, L.; Zhang, K.; Wu, X. C.; Zhang, L. L.; Li, B.; Chen, C. Y. Characterization of gold nanorods in vivo by integrated analytical techniques: Their uptake, retention and chemical forms. Anal. Bioanal. Chem. 2010, 396, 1105–1114.

    Google Scholar 

  135. Darien, B. J.; Sims, P. A.; Kruse-Elliott, K. T.; Homan, T. S.; Cashwell, R. J.; Albrecht, R. M. Use of colloidal gold and neutron activation in correlative microscopic labeling and label quantitation. Scanning Microsc. 1995, 9, 773–780.

    Google Scholar 

  136. Qiu, Y.; Liu, Y.; Wang, L. M.; Xu, L. G.; Bai, R.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Li, Y. F.; Chen, C. Y. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010, 31, 7606–7619.

    Google Scholar 

  137. Lehmann, A. D.; Parak, W. J.; Zhang, F.; Ali, Z.; Röcker, C.; Nienhaus, G. U.; Gehr, P.; Rothen-Rutishauser, B. Fluorescent magnetic nanoparticles induce a dose dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. Small 2010, 6, 753–762.

    Google Scholar 

  138. Teeguarden, J. G.; Hinderliter, P. M.; Orr, G.; Thrall, B. D.; Pounds, J. G. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 2007, 95, 300–312.

    Google Scholar 

  139. Alvarez, P. J. J.; Colvin, V.; Lead, J.; Stone, V. Research priorities to advance eco-responsible nanotechnology. ACS Nano 2009, 3, 1616–1619.

    Google Scholar 

  140. Chithrani, B. D.; Chang, W. C. W. Elucidating the mechanism of cellular uptakeand removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.

    Google Scholar 

  141. Green, J. J.; Chiu, E.; Leshchiner, E. S.; Shi, J.; Langer, R.; Anderson, D. G. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 2007, 7, 874–879.

    Google Scholar 

  142. Marquis, B. J.; Love, S. A.; Brown, K. L.; Haynes, C. L. Analytical methods to assess nanoparticle toxicity. Analyst 2009, 134, 425–439.

    Google Scholar 

  143. Soenen, S. J.; De Cuyper, M. Assessing cytotoxicity of (iron-oxide based) nanoparticles: An overwiew of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol. Imaging 2009, 4, 207–219.

    Google Scholar 

  144. Monteiro-Riviere, N. A.; Inman, A. O.; Zhang, L. W. Limitations and relative utility of screening assay to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmcol. 2009, 234, 222–235.

    Google Scholar 

  145. Dhawan, A.; Sharma, V. Toxicology assessment of nanoparticles: Methods and challenges. Anal. Bioanal. Chem. 2010, 398, 589–605.

    Google Scholar 

  146. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interfaces. Nat. Mater. 2009, 8, 543–557.

    Google Scholar 

  147. Torrano, A. A.; Pereira, A. S.; Oliviera, O. N.; Barros-Timmons, A. Probing the interactions of oppositely charged gold nanoparticles with dppg and dppc langmuir monolayers as cell membrane models. Colloids Surf., B 2013, 108, 120–126.

    Google Scholar 

  148. Negoda, A.; Liu, Y.; Hou, W. C.; Corredor, C.; Moghadam, B. Y.; Mussolf, C.; Li, W.; Walker, L.; Westerhoff, P.; Mason, A. J. et al. Engineered nanomaterials interactions with bilayer lipid membranes: Screening platforms to assess nanoparticle toxicity. Int. J. Biomed. Nanosci. Nanothechnol. 2013, 3, 52–83.

    Google Scholar 

  149. Chen, K. L.; Bothun, G. D. Nanoparticles meet cell membranes: Probing non specific interactions using model membranes. Environ. Sci. Technol. 2014, 48, 873–880.

    Google Scholar 

  150. Podila, R.; Brown, J. M. Toxicity of engineered nanomaterials: A physicochemical perspective. J. Biochem. Mol. Toxicol. 2013, 27, 50–55.

    Google Scholar 

  151. Xu, M. S.; Fujita, D.; Kajiwara, S.; Minowa, T.; Li, X. L.; Takemura, T.; Iwai, H.; Hanagata, N. Contribution of physicochemical characterization of monooxides to cytotoxicity. Biomaterials 2010, 31, 8022–8031.

    Google Scholar 

  152. Fenoglio, I.; Greco, G.; Tomatis, M.; Muller, J.; Raymondo-Pinero, E.; Béguin, F.; Fonseca, A.; Nagy, J. B.; Lison, D.; Fubini, B. Structural defects play a major role in the acute lung toxicity of multiwalled carbon nanotubes: physicochemical aspects. Chem. Res. Toxicol. 2008, 21, 1690–1697.

    Google Scholar 

  153. National Research Council. Toxicity testing in the 21st century: A vision and strategy, National Academies Press, Washington, DCEdition, 2007. available at http://dels.nas.edu/.

    Google Scholar 

  154. National Research Council. Toxicity in the 21st century: The role of the national toxicology program, National Academies Press, Washington, DCEdition, 2004. available at http://ntp.niehs.nih.gov/.

    Google Scholar 

  155. Sun, B. B.; Li, R. B.; Wang, X.; Xia, T. Predictive toxicological paradigm and high throughput approach for toxicity screening of engineered nanomaterials. Int. J. Biomed. Nanosci. Nanothechnol. 2013, 3, 4–18.

    Google Scholar 

  156. Kim, E. Y.; Schulz, R.; Swantek, P.; Kunstman, K.; Malim, M. H.; Wolinsky, S. M. Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes. Gene Ther. 2012, 19, 347–353.

    Google Scholar 

  157. Patel, S.; Jung, D.; Yin, P. T.; Carlton, P.; Yamamoto, M.; Bando, T.; Sugiyama, H.; Lee, K. B. Nanoscript: A nanoparticle-based artificial transcription factor for effective gene delivey. ACS Nano 2014, 8, 8959–8967.

    Google Scholar 

  158. Rauch, J.; Kolch. W.; Laurent, S.; Mahmoudi, M. Big signals from small particles: Regulation of cell signaling pathways by nanoparticles. Chem. Rev. 2013, 113, 3391–3406

    Google Scholar 

  159. Xue, J. P.; Shan, L. L.; Chen, H. Y.; Li, Y.; Zhu, H. Y.; Deng, D. W.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. Visual detection of STAT5B gene expression in living cells using the hairpin DNA modified gold nanoparticles. Biosens. Bioelectron. 2013, 41, 71–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Fratoddi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fratoddi, I., Venditti, I., Cametti, C. et al. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 8, 1771–1799 (2015). https://doi.org/10.1007/s12274-014-0697-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0697-3

Keywords

  • gold nanoparticles
  • nanospheres
  • nanorods
  • nanocages
  • nanostars
  • toxicity