Advertisement

Nano Research

, Volume 8, Issue 1, pp 1–22 | Cite as

Nanoscience and the nano-bioelectronics frontier

  • Xiaojie DuanEmail author
  • Charles M. LieberEmail author
Review Article

Abstract

This review describes work presented in the 2014 inaugural Tsinghua University Press-Springer Nano Research Award lecture, as well as current and future opportunities for nanoscience research at the interface with brain science. First, we briefly summarize some of the considerations and the research journey that has led to our focus on bottom-up nanoscale science and technology. Second, we recapitulate the motivation for and our seminal contributions to nanowire-based nanoscience and technology, including the rational design and synthesis of increasingly complex nanowire structures, and the corresponding broad range of “applications” enabled by the capability to control structure, composition and size from the atomic level upwards. Third, we describe in more detail nanowire-based electronic devices as revolutionary tools for brain science, including (i) motivation for nanoelectronics in brain science, (ii) demonstration of nanowire nanoelectronic arrays for high-spatial/high-temporal resolution extracellular recording, (iii) the development of fundamentally-new intracellular nanoelectronic devices that approach the sizes of single ion channels, (iv) the introduction and demonstration of a new paradigm for innervating cell networks with addressable nanoelectronic arrays in three-dimensions. Last, we conclude with a brief discussion of the exciting and potentially transformative advances expected to come from work at the nanoelectronics-brain interface.

Keywords

one-dimensional materials two-dimensional materials nanowires carbon nanotubes bottom-up paradigm nanoelectronics nanoelectronic arrays neural probes electrophysiology neural circuits brain activity map chronic recording and stimulation brain-machine interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wu, X.-L.; Zhou, P.; Lieber, C. M. Surface electronic properties probed with tunneling microscopy and chemical doping. Nature 1988, 335, 55–57.CrossRefGoogle Scholar
  2. [2]
    Wu, X.-L.; Zhou, P.; Lieber, C. M. Determination of the local effect of impurities on the charge-density-wave phase in TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1988, 61, 2604–2607.CrossRefGoogle Scholar
  3. [3]
    Wu, X. L.; Lieber, C. M. Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy. Science 1989, 243, 1703–1705.CrossRefGoogle Scholar
  4. [4]
    Wu, X. L.; Lieber, C. M. Scanning tunneling microscopy investigations of a new charge density wave phase in niobium-doped tantalum disulfide. J. Am. Chem. Soc. 1989, 111, 2731–2733.CrossRefGoogle Scholar
  5. [5]
    Wu, X. L.; Lieber, C. M.; Ginley, D. S.; Baughman, R. J. Scanning tunneling microscopy investigations of the local structure of Tl2Ba2CaCu2O8 single crystals. Appl. Phys. Lett. 1989, 55, 2129–2131.CrossRefGoogle Scholar
  6. [6]
    Wu, X. L.; Lieber, C. M. Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1T-TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1990, 64, 1150–1153.CrossRefGoogle Scholar
  7. [7]
    Wu, X. L.; Zhang, Z.; Wang, Y. L.; Lieber, C. M. Structural and electronic role of lead in (PbBi)2 Sr2CaCu2O8 superconductors by STM. Science 1990, 248, 1211–1214.CrossRefGoogle Scholar
  8. [8]
    Zhang, Z.; Wang, Y. L.; Wu, X. L.; Huang, J.-L.; Lieber, C. M. Electronic effect of lead substitution in single-crystal Bi(Pb)-Sr-Ca-Cu-O superconductors determined by scanning tunneling microscopy. Phys. Rev. B 1990, 42, 1082–1085.CrossRefGoogle Scholar
  9. [9]
    Dai, H. J.; Chen, H. F.; Lieber, C. M. Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 1991, 66, 3183–3186.CrossRefGoogle Scholar
  10. [10]
    Lieber, C. M.; Wu, X. L. Scanning tunneling microscopy studies of low-dimensional materials: Probing the effects of chemical substitutions at the atomic level. Acc. Chem. Res. 1991, 24, 170–177.CrossRefGoogle Scholar
  11. [11]
    Dai, H. J.; Lieber, C. M. Solid-hexatic-liquid phases in two-dimensional charge-density waves. Phys. Rev. Lett. 1992, 69, 1576–1579.CrossRefGoogle Scholar
  12. [12]
    Zhang, Z.; Lieber, C. M. Measurement of the energy gap in oxygen-annealed Bi2Sr2CaCu2O8+δ high-T csuperconductors by tunneling spectroscopy. Phys. Rev. B 1993, 47, 3423–3426.CrossRefGoogle Scholar
  13. [13]
    Dai, H. J.; Lieber, C. M. Scanning tunneling microscopy studies of low-dimensional materials: Charge density wave pinning and melting in two dimensions. Ann. Rev. Phys. Chem. 1993, 44, 237–263.CrossRefGoogle Scholar
  14. [14]
    Kelty, S. P.; Chen, C.-C.; Lieber, C. M. Superconductivity at 30 K in caesium-doped C60. Nature 1991, 352, 223–225.CrossRefGoogle Scholar
  15. [15]
    Chen, C.-C.; Kelty, S. P.; Lieber, C. M. (RbxK1−x)C60superconductors: Formation of a continuous series of solid solutions. Science 1991, 253, 886–888.CrossRefGoogle Scholar
  16. [16]
    Zhang, Z; Chen, C.-C.; Kelty, S. P.; Dai, H. J.; Lieber, C. M. The superconducting energy gap of Rb3C60. Nature 1991, 353, 333–335.CrossRefGoogle Scholar
  17. [17]
    Zhang, Z.; Chen, C.-C.; Lieber, C. M. Tunneling spectroscopy of M3C60 superconductors: The energy gap, strong coupling, and superconductivity. Science 1991, 254, 1619–1621.CrossRefGoogle Scholar
  18. [18]
    Chen, C.-C.; Lieber, C. M. Isotope effect and superconductivity in metal-doped C60. Science 1993, 259, 655–658.Google Scholar
  19. [19]
    Chen, C.-C.; Lieber, C. M. Synthesis of pure 13C60 and determination of the isotope effect forfullerene superconductors. J. Am. Chem. Soc. 1992, 114, 3141–3142.CrossRefGoogle Scholar
  20. [20]
    Zhang, Z.; Lieber, C. M. Nanotube structure and electronic properties probed by scanning tunneling microscopy. Appl. Phys. Lett. 1993, 62, 2792–2794.CrossRefGoogle Scholar
  21. [21]
    Odom, T. W.; Huang, J.-L.; Kim P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.CrossRefGoogle Scholar
  22. [22]
    Kim P.; Odom, T. W.; Huang, J.-L.; Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 1999, 82, 1225–1228.CrossRefGoogle Scholar
  23. [23]
    Venkataraman, L.; Lieber, C. M. Molybdenum selenide molecular wires as one-dimensional conductors. Phys. Rev. Lett. 1999, 83, 5334–5337.CrossRefGoogle Scholar
  24. [24]
    Odom, T. W.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Magnetic clusters on single-walled carbon nanotubes: The Kondo effect in a one-dimensional host. Science 2000, 290, 1549–1552.CrossRefGoogle Scholar
  25. [25]
    Ouyang, M.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Atomically resolved single-walled carbon nanotube intra-molecular junctions. Science 2001, 291, 97–100.CrossRefGoogle Scholar
  26. [26]
    Ouyang, M.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Energy gaps in “metallic” single-walled carbon nanotubes. Science 2001, 292, 702–705.CrossRefGoogle Scholar
  27. [27]
    Ouyang, M.; Huang, J.-L.; Lieber, C. M. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys. Rev. Lett. 2002, 88, 066804.CrossRefGoogle Scholar
  28. [28]
    Ouyang, M.; Huang, J.-L.; Lieber, C. M. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annu. Rev. Phys. Chem. 2002, 53, 201–220.CrossRefGoogle Scholar
  29. [29]
    Frisbie, C. D.; Rozsnyai, L. F.; Noy, A.; Wrighton, M. S.; Lieber, C. M. Functional group imaging by chemical force microscopy. Science 1994, 265, 2071–2074.CrossRefGoogle Scholar
  30. [30]
    Noy, A.; Vezenov, D. V.; Lieber, C. M. Chemical force microscopy. Annu. Rev. Mater. Sci. 1997, 27, 381–421.CrossRefGoogle Scholar
  31. [31]
    Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523–526.CrossRefGoogle Scholar
  32. [32]
    Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.CrossRefGoogle Scholar
  33. [33]
    Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 1998, 394, 52–55.CrossRefGoogle Scholar
  34. [34]
    Kim, P.; Lieber, C. M. Nanotube nanotweezers. Science 1999, 286, 2148–2150.CrossRefGoogle Scholar
  35. [35]
    Rueckes, T.; Kim, K; Joselevich, E.; Tseng, G. Y.; Cheung, C.-L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.CrossRefGoogle Scholar
  36. [36]
    Nantero. http://www.nantero.com/ (accessed on Dec. 7, 2014). Copyright 2000–2014, Nantero. Nantero is using carbon nanotubes for the development of next-generation semiconductor devices, including memory, logic, and other semiconductor products. In the field of memory, Nantero has developed NRAM™, a high-density fast nonvolatile Random Access Memory. Nantero is the first company to actively develop semiconductor products using carbon nanotubes in a production CMOS fab. Nantero is also the first company to develop microelectronic-grade carbon nanotube material, compatible with production CMOS fabs.
  37. [37]
    Dai, H. J.; Wong, E. W.; Lu, Y. Z.; Fan, S. S.; Lieber, C. M. Synthesis and characterization of carbide nanorods. Nature 1995, 375, 769–772.CrossRefGoogle Scholar
  38. [38]
    Wong, E. W.; Maynor, B. W.; Burns, L. D.; Lieber, C. M. Growth of metal carbide nanotubes and nanorods. Chem. Mater. 1996, 8, 2041–2046.CrossRefGoogle Scholar
  39. [39]
    Lieber, C. M.; Morales, A. M.; Sheehan, P. E.; Wong, E. W.; Yang, P. One-dimensional nanostructures: Rational synthesis, novel properties and applications. In Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale, Houston, USA, 1997, pp 165–187.Google Scholar
  40. [40]
    Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.CrossRefGoogle Scholar
  41. [41]
    Hu, J. T.; Ouyang, M.; Yang, P. D.; Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999, 399, 48–51.CrossRefGoogle Scholar
  42. [42]
    Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.CrossRefGoogle Scholar
  43. [43]
    Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.CrossRefGoogle Scholar
  44. [44]
    Duan, X. F.; Wang, J. F.; Lieber, C. M. Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 2000, 76, 1116–1118.CrossRefGoogle Scholar
  45. [45]
    Wei, Q.; Lieber, C. M. Solution-based synthesis of magnesium oxide nanorods. MRS Proc. 1999, 581, 3–7.CrossRefGoogle Scholar
  46. [46]
    Wei, Q.; Lieber, C. M. Synthesis of single crystal bismuth-telluride and lead-telluride nanowires for new thermoelectrical materials. MRS Proc. 1999, 581, 219–223.CrossRefGoogle Scholar
  47. [47]
    Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213–5216.CrossRefGoogle Scholar
  48. [48]
    Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214–2216.CrossRefGoogle Scholar
  49. [49]
    Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 2001, 105, 4062–4064.CrossRefGoogle Scholar
  50. [50]
    Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.CrossRefGoogle Scholar
  51. [51]
    Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 2002, 106, 4036–4039.CrossRefGoogle Scholar
  52. [52]
    Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 2002, 420, 57–61.CrossRefGoogle Scholar
  53. [53]
    Zhong, Z. H.; Qian, F.; Wang, D. L.; Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 2003, 3, 343–346.CrossRefGoogle Scholar
  54. [54]
    Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 2003, 125, 11498–11499.CrossRefGoogle Scholar
  55. [55]
    Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433–436.CrossRefGoogle Scholar
  56. [56]
    Wang, D. L.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871–874.CrossRefGoogle Scholar
  57. [57]
    Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 2004, 84, 4176–4178.CrossRefGoogle Scholar
  58. [58]
    Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004, 362, 1247–1260.CrossRefGoogle Scholar
  59. [59]
    Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65.CrossRefGoogle Scholar
  60. [60]
    Bell, D. C.; Wu, Y.; Barrelet, C. J.; Gradečak, S.; Xiang, J.; Timko B. P.; Lieber, C. M. Imaging and analysis of nanowires. Microscop. Res. Tech. 2004, 64, 373–389.CrossRefGoogle Scholar
  61. [61]
    Qian, F.; Li, Y.; Gradečak, S.; Wang, D.; Barrelet, C. J.; Lieber, C. M. Gallium nitride-based nanowire radial hetero-structures for nanophotonics. Nano Lett. 2004, 4, 1975–1979.CrossRefGoogle Scholar
  62. [62]
    Zheng, G.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890–1893.CrossRefGoogle Scholar
  63. [63]
    Lu, W.; Xiang, J.; Timko, B. P.; Wu, Y.; Lieber, C. M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10046–10051.CrossRefGoogle Scholar
  64. [64]
    Radovanovic, P.V.; Barrelet, C. J.; Gradečak, S.; Qian, F.; Lieber, C. M. General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett. 2005, 5, 1407–1411.CrossRefGoogle Scholar
  65. [65]
    Qian, F.; Gradečak, S.; Li, Y.; Wen, C.-Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.CrossRefGoogle Scholar
  66. [66]
    Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation doped silicon nanowires. Science 2005, 310, 1304–1307.CrossRefGoogle Scholar
  67. [67]
    Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.CrossRefGoogle Scholar
  68. [68]
    Li, Y.; Xiang, J.; Qian, F.; Gradečak, S.; Wu, Y.; Yan, H.; Blom, D. A.; Lieber, C. M. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 2006, 6, 1468–1473.CrossRefGoogle Scholar
  69. [69]
    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Materials Today 2006, 9, 18–27.CrossRefGoogle Scholar
  70. [70]
    Agarwal, R.; Lieber, C. M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A: Mater. Sci. Proc. 2006, 85, 209–215.CrossRefGoogle Scholar
  71. [71]
    Lu, W.; Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 2006, 39, R387–R406.CrossRefGoogle Scholar
  72. [72]
    Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.CrossRefGoogle Scholar
  73. [73]
    Lieber, C. M.; Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99–108.CrossRefGoogle Scholar
  74. [74]
    Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214–3218.CrossRefGoogle Scholar
  75. [75]
    Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.CrossRefGoogle Scholar
  76. [76]
    Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu, W.; Lieber, C. M. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 2008, 8, 386–391.CrossRefGoogle Scholar
  77. [77]
    Park, W. I.; Zheng, G. F.; Jiang, X. C.; Tian, B. Z.; Lieber, C. M. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 2008, 8, 3004–3009.CrossRefGoogle Scholar
  78. [78]
    Qian, F.; Li, Y.; Gradečak, S.; Park, H.-G.; Dong, Y. J.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 2008, 7, 701–706.CrossRefGoogle Scholar
  79. [79]
    Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.CrossRefGoogle Scholar
  80. [80]
    Dong, Y. J.; Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183–2187.CrossRefGoogle Scholar
  81. [81]
    Zwanenburg, F. A.; van Loon, A. A.; Steele, G. A.; van Rijmenam, C. E. W. M.; Balder, T.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Ultra-small silicon quantum dots. J. Appl. Phys. 2009, 105, 124314–1.CrossRefGoogle Scholar
  82. [82]
    Xie, P.; Hu, Y. J.; Fang, Y.; Huang, J. L.; Lieber, C. M. Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15254–15258.CrossRefGoogle Scholar
  83. [83]
    Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.CrossRefGoogle Scholar
  84. [84]
    Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field effect transistors as localized bioprobes. Science 2010, 329, 830–834.CrossRefGoogle Scholar
  85. [85]
    Jiang, X. C.; Tian, B. Z.; Xiang, J.; Qian, F.; Zheng, G. F.; Wang, H. T.; Mai, L. Q.; Lieber, C. M. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 12212–12216.CrossRefGoogle Scholar
  86. [86]
    Lieber, C. M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 2011, 36, 1052–1063.CrossRefGoogle Scholar
  87. [87]
    Kempa, T. J.; Cahoon, J. F.; Kim, S.-K.; Day, R. W.; Bell, D. C.; Park, H.-G.; Lieber, C. M. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 1407–1412.CrossRefGoogle Scholar
  88. [88]
    Jiang, Z.; Qing, Q.; Xie, P.; Gao, R. X.; Lieber, C. M. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 2012, 12, 1711–1716.CrossRefGoogle Scholar
  89. [89]
    Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Synthetically-encoded ultrashort-channel nanowire transistors for fast, point-like cellular signal detection. Nano Lett. 2012, 12, 2639–2644.CrossRefGoogle Scholar
  90. [90]
    Xu, L.; Jiang, Z.; Qing, Q.; Mai, L. Q.; Zhang, Q. J.; Lieber, C. M. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 2013, 13, 746–751.CrossRefGoogle Scholar
  91. [91]
    Kempa, T. J.; Kim, S.-K.; Day, R. W.; Park, H.-G.; Nocera, D. G.; Lieber, C. M. Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 2013, 135, 18354–18357.CrossRefGoogle Scholar
  92. [92]
    Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.CrossRefGoogle Scholar
  93. [93]
    Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630–633.CrossRefGoogle Scholar
  94. [94]
    Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.CrossRefGoogle Scholar
  95. [95]
    Lieber, C. M. The incredible shrinking circuit. Sci. Am. 2001, 285, 59–64.CrossRefGoogle Scholar
  96. [96]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.CrossRefGoogle Scholar
  97. [97]
    Lieber, C. M. Nanoscience and nanotechnology: Building a big future from small things; New York Academy of Sciences: New York, 2002; pp 6–9.Google Scholar
  98. [98]
    Duan, X.; Huang, Y.; Lieber, C. M. Nanowire nanocircuits. In McGraw-Hill Yearbook of Science and Technology. Licker, M. D. et al. Eds.; McGraw-Hill: 2003; pp 272–276.Google Scholar
  99. [99]
    Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.CrossRefGoogle Scholar
  100. [100]
    Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.CrossRefGoogle Scholar
  101. [101]
    McAlpine, M. C.; Friedman, R. S.; Jin, S.; Lin, K.-H.; Wang, W. U.; Lieber, C. M. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 2003, 3, 1531–1535.CrossRefGoogle Scholar
  102. [102]
    Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377–1379.CrossRefGoogle Scholar
  103. [103]
    Jin, S.; Whang, D.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 2004, 4, 915–919.CrossRefGoogle Scholar
  104. [104]
    Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.CrossRefGoogle Scholar
  105. [105]
    Agarwal, R.; Ladavac, K.; Roichman, Y.; Yu, G. H.; Lieber, C. M.; Grier, D. G. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 2005, 13, 8906–8912.CrossRefGoogle Scholar
  106. [106]
    Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.CrossRefGoogle Scholar
  107. [107]
    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 2007, 6, 841–850.CrossRefGoogle Scholar
  108. [108]
    Yan, H.; Choe, H. S.; Nam, S.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Programmable nanowire circuits for nanoprocessors. Nature 2011, 470, 240–244.CrossRefGoogle Scholar
  109. [109]
    Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329–335.CrossRefGoogle Scholar
  110. [110]
    Yao. J.; Yan, H.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Nanowire nanocomputer as a finite-state machine. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 2431–2435.CrossRefGoogle Scholar
  111. [111]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2002, 2, 101–104.CrossRefGoogle Scholar
  112. [112]
    Duan, X. F.; Huang, Y.; Cui, Y.; Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487–490.CrossRefGoogle Scholar
  113. [113]
    Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.CrossRefGoogle Scholar
  114. [114]
    Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. High-speed integrated nanowire circuits. Nature 2005, 434, 1085.CrossRefGoogle Scholar
  115. [115]
    McAlpine, M. C.; Friedman, R. S.; Lieber, C. M. High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc. IEEE 2005, 93, 1357–1363.CrossRefGoogle Scholar
  116. [116]
    Hu, Y. J.; Xiang, J.; Liang, G.; Yan, H.; Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925–930.CrossRefGoogle Scholar
  117. [117]
    Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 2008, 55, 2859–2876.CrossRefGoogle Scholar
  118. [118]
    Nam, S.; Jiang, X. C.; Xiong, Q. H.; Ham, D.; Lieber, C. M. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21035–21038.CrossRefGoogle Scholar
  119. [119]
    Zhong, Z. H.; Fang, Y.; Lu, W.; Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 2005, 5, 1143–1146.CrossRefGoogle Scholar
  120. [120]
    Xiang, J.; Vidan, A.; Tinkham, M.; Westervelt, R. M.; Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 2006, 1, 208–213.CrossRefGoogle Scholar
  121. [121]
    Hu, Y.; Churchill, H. O. H.; Reilly, D. J.; Xiang, J.; Lieber, C. M.; Marcus, C. M. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol. 2007, 2, 622–625.CrossRefGoogle Scholar
  122. [122]
    Roddaro, S.; Fuhrer, A.; Brusheim, P.; Fasth, C.; Xu, H. Q.; Samuelson, L.; Xiang, J.; Lieber, C. M. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 2008, 101, 186802.CrossRefGoogle Scholar
  123. [123]
    Zwanenburg, F. A.; van Rijmenam, C. E. W. M.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 2009, 9, 1071–1079.CrossRefGoogle Scholar
  124. [124]
    Lee, E. J. H.; Jiang, X. C.; Aguado, R.; Katsaros, G.; Lieber, C. M.; De Franceschi, S. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 2012, 109, 186802.CrossRefGoogle Scholar
  125. [125]
    Lee, E. J. H.; Jiang, X. C.; Houzet, M.; Aguado, R.; Lieber, C. M.; De Franceschi, S. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 2014, 9, 79–84.CrossRefGoogle Scholar
  126. [126]
    Higginbotham, A.; Larsen, T. W.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M.; Kuemmeth, F. Hole spin coherence in a Ge/Si heterostructure nanowire. Nano Lett. 2014, 14, 3582–3586.CrossRefGoogle Scholar
  127. [127]
    Higginbotham, A. P.; Kuemmeth, F.; Larsen, T. W.; Fitzpatrick, M.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M. Antilocalization of Coulomb blockade in Ge/Si nanowire. Phys. Rev. Lett. 2014, 112, 216806.CrossRefGoogle Scholar
  128. [128]
    Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.CrossRefGoogle Scholar
  129. [129]
    Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245.CrossRefGoogle Scholar
  130. [130]
    Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981–1985.CrossRefGoogle Scholar
  131. [131]
    Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–920.CrossRefGoogle Scholar
  132. [132]
    Greytak, A. B.; Barrelet, C. J.; Li, Y.; Lieber, C. M. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 2005, 87, 151103.CrossRefGoogle Scholar
  133. [133]
    Gradečak, S.; Qian, F.; Li, Y.; Park, H.-G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.CrossRefGoogle Scholar
  134. [134]
    Barrelet, C. J.; Bao, J. M.; Lončar, M.; Park, H.-G.; Capasso, F.; Lieber, C. M. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 2006, 6, 11–15.CrossRefGoogle Scholar
  135. [135]
    Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly-sensitive and spatially-resolved photon detection. Nat. Mater. 2006, 5, 352–356.CrossRefGoogle Scholar
  136. [136]
    Park, H.-G.; Barrelet, C. J.; Wu, Y. N.; Tian, B. Z.; Qian, F.; Lieber, C. M. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics 2008, 2, 622–626.CrossRefGoogle Scholar
  137. [137]
    Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonicnanolaser. Nat. Comm. 2014, 5, 4953.CrossRefGoogle Scholar
  138. [138]
    Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009, 38, 16–24.CrossRefGoogle Scholar
  139. [139]
    Kim, S.-K.; Day, R. W.; Cahoon, J. F.; Kempa, T. J.; Song, K.-D.; Park, H.-G.; Lieber, C. M. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 2012, 12, 4971–4976.CrossRefGoogle Scholar
  140. [140]
    Kempa, T. J.; Day, R. W.; Kim, S.-K.; Park, H.-G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719–733.CrossRefGoogle Scholar
  141. [141]
    Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  142. [142]
    Yang, P. D.; Tarascon, J.-M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560–563.CrossRefGoogle Scholar
  143. [143]
    Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.CrossRefGoogle Scholar
  144. [144]
    Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  145. [145]
    Hahm, J.-I.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.CrossRefGoogle Scholar
  146. [146]
    Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14017–14022.CrossRefGoogle Scholar
  147. [147]
    Wang, W. U.; Chen, C.; Lin, K.-H.; Fang, Y.; Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3208–3212.CrossRefGoogle Scholar
  148. [148]
    Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefGoogle Scholar
  149. [149]
    Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nanowire sensors for medicine and the life sciences. Nanomedicine 2006, 1, 51–65.CrossRefGoogle Scholar
  150. [150]
    Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.CrossRefGoogle Scholar
  151. [151]
    Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.CrossRefGoogle Scholar
  152. [152]
    Timko, B. P.; Cohen-Karni, T.; Yu, G. H.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009, 9, 914–918.CrossRefGoogle Scholar
  153. [153]
    Cohen-Karni, T.; Timko, B. P.; Weiss, L. E.; Lieber, C. M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7309–7313.CrossRefGoogle Scholar
  154. [154]
    Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.CrossRefGoogle Scholar
  155. [155]
    Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1882–1887.CrossRefGoogle Scholar
  156. [156]
    Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010, 10, 1098–1102.CrossRefGoogle Scholar
  157. [157]
    Timko, B. P.; Cohen-Karni, T.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 2010, 9, 269–280.CrossRefGoogle Scholar
  158. [158]
    Zheng, G. F.; Gao, X. P. A.; Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179–3183.CrossRefGoogle Scholar
  159. [159]
    Xie, P.; Xiong, Q. H.; Fang, Y.; Qing, Q.; Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 2012, 7, 119–125.CrossRefGoogle Scholar
  160. [160]
    Duan, X. J.; Gao, R. X.; Xie, P.; Cohen-Karni, T.; Qing, Q.; Choe, H. S.; Tian, B. Z.; Jiang, X. C.; Lieber, C. M. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 2012, 7, 174–179.CrossRefGoogle Scholar
  161. [161]
    Gao, R. X.; Strehle, S.; Tian, B. Z.; Cohen-Karni, T.; Xie, P.; Duan, X. J.; Qing, Q.; Lieber, C. M. Outside looking in: Nanotube transistor intracellular sensors. Nano Lett. 2012, 12, 3329–3333.CrossRefGoogle Scholar
  162. [162]
    Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994.CrossRefGoogle Scholar
  163. [163]
    Liu, J.; Xie, C.; Dai, X. C.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 6694–6699.CrossRefGoogle Scholar
  164. [164]
    Tian, B. Z.; Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 2013, 6, 31–51.CrossRefGoogle Scholar
  165. [165]
    Duan, X. J.; Fu, T.-M.; Liu, J.; Lieber, C. M. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 2013, 8, 351–373.CrossRefGoogle Scholar
  166. [166]
    Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2014, 9, 142–147.CrossRefGoogle Scholar
  167. [167]
    Fu, T.-M.; Duan, X. J.; Jiang, Z.; Dai, X. C.; Xie, P.; Cheng, Z. G.; Lieber, C. M. Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 1259–1264.CrossRefGoogle Scholar
  168. [168]
    Zhou, W.; Dai, X. C.; Fu, T-M.; Xie, C.; Liu, J.; Lieber, C. M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 2014, 14, 1614–1619.CrossRefGoogle Scholar
  169. [169]
    Xie, C.; Lin, Z. L.; Hanson, L.; Cui, Y.; Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 2012, 7, 185–190.CrossRefGoogle Scholar
  170. [170]
    Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M.-H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180–184.CrossRefGoogle Scholar
  171. [171]
    Shepherd, G. M. The Synaptic Organization of the Brain, 5th Ed.; Oxford Univ Press, Inc.: New York, 2004.CrossRefGoogle Scholar
  172. [172]
    Scanziani, M.; Häusser, M. Electrophysiology in the age of light. Nature 2009, 461, 930–939.CrossRefGoogle Scholar
  173. [173]
    Seymour, J. P.; Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 2007, 28, 3594–3607.CrossRefGoogle Scholar
  174. [174]
    Viventi, J.; Kim, D.-H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y.-S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S.-W.; Vanleer, A. C.; et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605.CrossRefGoogle Scholar
  175. [175]
    Erickson, J.; Tooker, A.; Tai, Y. C.; Pine, J. Caged neuron MEA: Asystem for long-term investigation of cultured neural network connectivity. J. Neurosci. Methods 2008, 175, 1–16.CrossRefGoogle Scholar
  176. [176]
    Egert, U.; Heck, D.; Aertsen, A. Two-dimensional monitoring of spiking networks in acute brain slices. Exp. Brain Res. 2002, 142, 268–274.CrossRefGoogle Scholar
  177. [177]
    Wirth, C.; Lüscher, H. R. Spatiotemporalevolution of excitation and inhibition in the rat barrel cortex investigated with multielectrodearrays. J. Neurophysiol. 2004, 91, 1635–1647.CrossRefGoogle Scholar
  178. [178]
    Frey, U.; Egert, U.; Heer, F.; Hafizovic, S.; Hierlemann, A. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 2009, 24, 2191–2198.CrossRefGoogle Scholar
  179. [179]
    Stangl, C.; Fromherz, P. Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur. J. Neurosci. 2008, 27, 958–964.CrossRefGoogle Scholar
  180. [180]
    Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology; John Wiley & Sons, Ltd.: Chichester, West Sussex, England, 2003.Google Scholar
  181. [181]
    Davie, J. T.; Kole, M. H. P.; Letzkus, J. J.; Rancz, E. A.; Spruston, N.; Stuart, G. J.; Häusser, M. Dendritic patchclamp recording. Nat. Protoc. 2006, 1, 1235–1247.CrossRefGoogle Scholar
  182. [182]
    Duan, X. J.; Lieber, C. M. Nanoelectronicsmeets biology: From new nanoscaledevices for live-cell recording to 3D innervated tissues. Chem. Asian J. 2013, 8, 2304–2314.CrossRefGoogle Scholar
  183. [183]
    Bers, D. M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205.CrossRefGoogle Scholar
  184. [184]
    Koch, C.; Reid, R. C. Neuroscience: Observatories of the mind. Nature 2012, 483, 397–398.CrossRefGoogle Scholar
  185. [185]
    Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13–22.CrossRefGoogle Scholar
  186. [186]
    Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; Jin, H. W.; Parker, K. K.; Langer, R.; Kohane, D. S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011, 6, 720–725.CrossRefGoogle Scholar
  187. [187]
    Kim, D.-H.; Lu, N. S.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science, 2011, 333, 838–843.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
  2. 2.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  3. 3.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations