Nanoscience and the nano-bioelectronics frontier

Abstract

This review describes work presented in the 2014 inaugural Tsinghua University Press-Springer Nano Research Award lecture, as well as current and future opportunities for nanoscience research at the interface with brain science. First, we briefly summarize some of the considerations and the research journey that has led to our focus on bottom-up nanoscale science and technology. Second, we recapitulate the motivation for and our seminal contributions to nanowire-based nanoscience and technology, including the rational design and synthesis of increasingly complex nanowire structures, and the corresponding broad range of “applications” enabled by the capability to control structure, composition and size from the atomic level upwards. Third, we describe in more detail nanowire-based electronic devices as revolutionary tools for brain science, including (i) motivation for nanoelectronics in brain science, (ii) demonstration of nanowire nanoelectronic arrays for high-spatial/high-temporal resolution extracellular recording, (iii) the development of fundamentally-new intracellular nanoelectronic devices that approach the sizes of single ion channels, (iv) the introduction and demonstration of a new paradigm for innervating cell networks with addressable nanoelectronic arrays in three-dimensions. Last, we conclude with a brief discussion of the exciting and potentially transformative advances expected to come from work at the nanoelectronics-brain interface.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wu, X.-L.; Zhou, P.; Lieber, C. M. Surface electronic properties probed with tunneling microscopy and chemical doping. Nature 1988, 335, 55–57.

    Article  Google Scholar 

  2. [2]

    Wu, X.-L.; Zhou, P.; Lieber, C. M. Determination of the local effect of impurities on the charge-density-wave phase in TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1988, 61, 2604–2607.

    Article  Google Scholar 

  3. [3]

    Wu, X. L.; Lieber, C. M. Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy. Science 1989, 243, 1703–1705.

    Article  Google Scholar 

  4. [4]

    Wu, X. L.; Lieber, C. M. Scanning tunneling microscopy investigations of a new charge density wave phase in niobium-doped tantalum disulfide. J. Am. Chem. Soc. 1989, 111, 2731–2733.

    Article  Google Scholar 

  5. [5]

    Wu, X. L.; Lieber, C. M.; Ginley, D. S.; Baughman, R. J. Scanning tunneling microscopy investigations of the local structure of Tl2Ba2CaCu2O8 single crystals. Appl. Phys. Lett. 1989, 55, 2129–2131.

    Article  Google Scholar 

  6. [6]

    Wu, X. L.; Lieber, C. M. Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1T-TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1990, 64, 1150–1153.

    Article  Google Scholar 

  7. [7]

    Wu, X. L.; Zhang, Z.; Wang, Y. L.; Lieber, C. M. Structural and electronic role of lead in (PbBi)2 Sr2CaCu2O8 superconductors by STM. Science 1990, 248, 1211–1214.

    Article  Google Scholar 

  8. [8]

    Zhang, Z.; Wang, Y. L.; Wu, X. L.; Huang, J.-L.; Lieber, C. M. Electronic effect of lead substitution in single-crystal Bi(Pb)-Sr-Ca-Cu-O superconductors determined by scanning tunneling microscopy. Phys. Rev. B 1990, 42, 1082–1085.

    Article  Google Scholar 

  9. [9]

    Dai, H. J.; Chen, H. F.; Lieber, C. M. Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 1991, 66, 3183–3186.

    Article  Google Scholar 

  10. [10]

    Lieber, C. M.; Wu, X. L. Scanning tunneling microscopy studies of low-dimensional materials: Probing the effects of chemical substitutions at the atomic level. Acc. Chem. Res. 1991, 24, 170–177.

    Article  Google Scholar 

  11. [11]

    Dai, H. J.; Lieber, C. M. Solid-hexatic-liquid phases in two-dimensional charge-density waves. Phys. Rev. Lett. 1992, 69, 1576–1579.

    Article  Google Scholar 

  12. [12]

    Zhang, Z.; Lieber, C. M. Measurement of the energy gap in oxygen-annealed Bi2Sr2CaCu2O8+δ high-T csuperconductors by tunneling spectroscopy. Phys. Rev. B 1993, 47, 3423–3426.

    Article  Google Scholar 

  13. [13]

    Dai, H. J.; Lieber, C. M. Scanning tunneling microscopy studies of low-dimensional materials: Charge density wave pinning and melting in two dimensions. Ann. Rev. Phys. Chem. 1993, 44, 237–263.

    Article  Google Scholar 

  14. [14]

    Kelty, S. P.; Chen, C.-C.; Lieber, C. M. Superconductivity at 30 K in caesium-doped C60. Nature 1991, 352, 223–225.

    Article  Google Scholar 

  15. [15]

    Chen, C.-C.; Kelty, S. P.; Lieber, C. M. (RbxK1−x )C60superconductors: Formation of a continuous series of solid solutions. Science 1991, 253, 886–888.

    Article  Google Scholar 

  16. [16]

    Zhang, Z; Chen, C.-C.; Kelty, S. P.; Dai, H. J.; Lieber, C. M. The superconducting energy gap of Rb3C60. Nature 1991, 353, 333–335.

    Article  Google Scholar 

  17. [17]

    Zhang, Z.; Chen, C.-C.; Lieber, C. M. Tunneling spectroscopy of M3C60 superconductors: The energy gap, strong coupling, and superconductivity. Science 1991, 254, 1619–1621.

    Article  Google Scholar 

  18. [18]

    Chen, C.-C.; Lieber, C. M. Isotope effect and superconductivity in metal-doped C60. Science 1993, 259, 655–658.

    Google Scholar 

  19. [19]

    Chen, C.-C.; Lieber, C. M. Synthesis of pure 13C60 and determination of the isotope effect forfullerene superconductors. J. Am. Chem. Soc. 1992, 114, 3141–3142.

    Article  Google Scholar 

  20. [20]

    Zhang, Z.; Lieber, C. M. Nanotube structure and electronic properties probed by scanning tunneling microscopy. Appl. Phys. Lett. 1993, 62, 2792–2794.

    Article  Google Scholar 

  21. [21]

    Odom, T. W.; Huang, J.-L.; Kim P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.

    Article  Google Scholar 

  22. [22]

    Kim P.; Odom, T. W.; Huang, J.-L.; Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 1999, 82, 1225–1228.

    Article  Google Scholar 

  23. [23]

    Venkataraman, L.; Lieber, C. M. Molybdenum selenide molecular wires as one-dimensional conductors. Phys. Rev. Lett. 1999, 83, 5334–5337.

    Article  Google Scholar 

  24. [24]

    Odom, T. W.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Magnetic clusters on single-walled carbon nanotubes: The Kondo effect in a one-dimensional host. Science 2000, 290, 1549–1552.

    Article  Google Scholar 

  25. [25]

    Ouyang, M.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Atomically resolved single-walled carbon nanotube intra-molecular junctions. Science 2001, 291, 97–100.

    Article  Google Scholar 

  26. [26]

    Ouyang, M.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Energy gaps in “metallic” single-walled carbon nanotubes. Science 2001, 292, 702–705.

    Article  Google Scholar 

  27. [27]

    Ouyang, M.; Huang, J.-L.; Lieber, C. M. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys. Rev. Lett. 2002, 88, 066804.

    Article  Google Scholar 

  28. [28]

    Ouyang, M.; Huang, J.-L.; Lieber, C. M. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annu. Rev. Phys. Chem. 2002, 53, 201–220.

    Article  Google Scholar 

  29. [29]

    Frisbie, C. D.; Rozsnyai, L. F.; Noy, A.; Wrighton, M. S.; Lieber, C. M. Functional group imaging by chemical force microscopy. Science 1994, 265, 2071–2074.

    Article  Google Scholar 

  30. [30]

    Noy, A.; Vezenov, D. V.; Lieber, C. M. Chemical force microscopy. Annu. Rev. Mater. Sci. 1997, 27, 381–421.

    Article  Google Scholar 

  31. [31]

    Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523–526.

    Article  Google Scholar 

  32. [32]

    Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.

    Article  Google Scholar 

  33. [33]

    Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 1998, 394, 52–55.

    Article  Google Scholar 

  34. [34]

    Kim, P.; Lieber, C. M. Nanotube nanotweezers. Science 1999, 286, 2148–2150.

    Article  Google Scholar 

  35. [35]

    Rueckes, T.; Kim, K; Joselevich, E.; Tseng, G. Y.; Cheung, C.-L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.

    Article  Google Scholar 

  36. [36]

    Nantero. http://www.nantero.com/ (accessed on Dec. 7, 2014). Copyright 2000–2014, Nantero. Nantero is using carbon nanotubes for the development of next-generation semiconductor devices, including memory, logic, and other semiconductor products. In the field of memory, Nantero has developed NRAM™, a high-density fast nonvolatile Random Access Memory. Nantero is the first company to actively develop semiconductor products using carbon nanotubes in a production CMOS fab. Nantero is also the first company to develop microelectronic-grade carbon nanotube material, compatible with production CMOS fabs.

  37. [37]

    Dai, H. J.; Wong, E. W.; Lu, Y. Z.; Fan, S. S.; Lieber, C. M. Synthesis and characterization of carbide nanorods. Nature 1995, 375, 769–772.

    Article  Google Scholar 

  38. [38]

    Wong, E. W.; Maynor, B. W.; Burns, L. D.; Lieber, C. M. Growth of metal carbide nanotubes and nanorods. Chem. Mater. 1996, 8, 2041–2046.

    Article  Google Scholar 

  39. [39]

    Lieber, C. M.; Morales, A. M.; Sheehan, P. E.; Wong, E. W.; Yang, P. One-dimensional nanostructures: Rational synthesis, novel properties and applications. In Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale, Houston, USA, 1997, pp 165–187.

    Google Scholar 

  40. [40]

    Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

    Article  Google Scholar 

  41. [41]

    Hu, J. T.; Ouyang, M.; Yang, P. D.; Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999, 399, 48–51.

    Article  Google Scholar 

  42. [42]

    Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

    Article  Google Scholar 

  43. [43]

    Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.

    Article  Google Scholar 

  44. [44]

    Duan, X. F.; Wang, J. F.; Lieber, C. M. Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 2000, 76, 1116–1118.

    Article  Google Scholar 

  45. [45]

    Wei, Q.; Lieber, C. M. Solution-based synthesis of magnesium oxide nanorods. MRS Proc. 1999, 581, 3–7.

    Article  Google Scholar 

  46. [46]

    Wei, Q.; Lieber, C. M. Synthesis of single crystal bismuth-telluride and lead-telluride nanowires for new thermoelectrical materials. MRS Proc. 1999, 581, 219–223.

    Article  Google Scholar 

  47. [47]

    Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213–5216.

    Article  Google Scholar 

  48. [48]

    Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214–2216.

    Article  Google Scholar 

  49. [49]

    Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 2001, 105, 4062–4064.

    Article  Google Scholar 

  50. [50]

    Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

    Article  Google Scholar 

  51. [51]

    Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 2002, 106, 4036–4039.

    Article  Google Scholar 

  52. [52]

    Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 2002, 420, 57–61.

    Article  Google Scholar 

  53. [53]

    Zhong, Z. H.; Qian, F.; Wang, D. L.; Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 2003, 3, 343–346.

    Article  Google Scholar 

  54. [54]

    Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 2003, 125, 11498–11499.

    Article  Google Scholar 

  55. [55]

    Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433–436.

    Article  Google Scholar 

  56. [56]

    Wang, D. L.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871–874.

    Article  Google Scholar 

  57. [57]

    Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 2004, 84, 4176–4178.

    Article  Google Scholar 

  58. [58]

    Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004, 362, 1247–1260.

    Article  Google Scholar 

  59. [59]

    Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65.

    Article  Google Scholar 

  60. [60]

    Bell, D. C.; Wu, Y.; Barrelet, C. J.; Gradečak, S.; Xiang, J.; Timko B. P.; Lieber, C. M. Imaging and analysis of nanowires. Microscop. Res. Tech. 2004, 64, 373–389.

    Article  Google Scholar 

  61. [61]

    Qian, F.; Li, Y.; Gradečak, S.; Wang, D.; Barrelet, C. J.; Lieber, C. M. Gallium nitride-based nanowire radial hetero-structures for nanophotonics. Nano Lett. 2004, 4, 1975–1979.

    Article  Google Scholar 

  62. [62]

    Zheng, G.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890–1893.

    Article  Google Scholar 

  63. [63]

    Lu, W.; Xiang, J.; Timko, B. P.; Wu, Y.; Lieber, C. M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10046–10051.

    Article  Google Scholar 

  64. [64]

    Radovanovic, P.V.; Barrelet, C. J.; Gradečak, S.; Qian, F.; Lieber, C. M. General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett. 2005, 5, 1407–1411.

    Article  Google Scholar 

  65. [65]

    Qian, F.; Gradečak, S.; Li, Y.; Wen, C.-Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

    Article  Google Scholar 

  66. [66]

    Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation doped silicon nanowires. Science 2005, 310, 1304–1307.

    Article  Google Scholar 

  67. [67]

    Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.

    Article  Google Scholar 

  68. [68]

    Li, Y.; Xiang, J.; Qian, F.; Gradečak, S.; Wu, Y.; Yan, H.; Blom, D. A.; Lieber, C. M. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 2006, 6, 1468–1473.

    Article  Google Scholar 

  69. [69]

    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Materials Today 2006, 9, 18–27.

    Article  Google Scholar 

  70. [70]

    Agarwal, R.; Lieber, C. M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A: Mater. Sci. Proc. 2006, 85, 209–215.

    Article  Google Scholar 

  71. [71]

    Lu, W.; Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 2006, 39, R387–R406.

    Article  Google Scholar 

  72. [72]

    Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.

    Article  Google Scholar 

  73. [73]

    Lieber, C. M.; Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99–108.

    Article  Google Scholar 

  74. [74]

    Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214–3218.

    Article  Google Scholar 

  75. [75]

    Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

    Article  Google Scholar 

  76. [76]

    Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu, W.; Lieber, C. M. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 2008, 8, 386–391.

    Article  Google Scholar 

  77. [77]

    Park, W. I.; Zheng, G. F.; Jiang, X. C.; Tian, B. Z.; Lieber, C. M. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 2008, 8, 3004–3009.

    Article  Google Scholar 

  78. [78]

    Qian, F.; Li, Y.; Gradečak, S.; Park, H.-G.; Dong, Y. J.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 2008, 7, 701–706.

    Article  Google Scholar 

  79. [79]

    Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.

    Article  Google Scholar 

  80. [80]

    Dong, Y. J.; Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183–2187.

    Article  Google Scholar 

  81. [81]

    Zwanenburg, F. A.; van Loon, A. A.; Steele, G. A.; van Rijmenam, C. E. W. M.; Balder, T.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Ultra-small silicon quantum dots. J. Appl. Phys. 2009, 105, 124314–1.

    Article  Google Scholar 

  82. [82]

    Xie, P.; Hu, Y. J.; Fang, Y.; Huang, J. L.; Lieber, C. M. Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15254–15258.

    Article  Google Scholar 

  83. [83]

    Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

    Article  Google Scholar 

  84. [84]

    Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field effect transistors as localized bioprobes. Science 2010, 329, 830–834.

    Article  Google Scholar 

  85. [85]

    Jiang, X. C.; Tian, B. Z.; Xiang, J.; Qian, F.; Zheng, G. F.; Wang, H. T.; Mai, L. Q.; Lieber, C. M. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 12212–12216.

    Article  Google Scholar 

  86. [86]

    Lieber, C. M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 2011, 36, 1052–1063.

    Article  Google Scholar 

  87. [87]

    Kempa, T. J.; Cahoon, J. F.; Kim, S.-K.; Day, R. W.; Bell, D. C.; Park, H.-G.; Lieber, C. M. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 1407–1412.

    Article  Google Scholar 

  88. [88]

    Jiang, Z.; Qing, Q.; Xie, P.; Gao, R. X.; Lieber, C. M. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 2012, 12, 1711–1716.

    Article  Google Scholar 

  89. [89]

    Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Synthetically-encoded ultrashort-channel nanowire transistors for fast, point-like cellular signal detection. Nano Lett. 2012, 12, 2639–2644.

    Article  Google Scholar 

  90. [90]

    Xu, L.; Jiang, Z.; Qing, Q.; Mai, L. Q.; Zhang, Q. J.; Lieber, C. M. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 2013, 13, 746–751.

    Article  Google Scholar 

  91. [91]

    Kempa, T. J.; Kim, S.-K.; Day, R. W.; Park, H.-G.; Nocera, D. G.; Lieber, C. M. Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 2013, 135, 18354–18357.

    Article  Google Scholar 

  92. [92]

    Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

    Article  Google Scholar 

  93. [93]

    Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630–633.

    Article  Google Scholar 

  94. [94]

    Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

    Article  Google Scholar 

  95. [95]

    Lieber, C. M. The incredible shrinking circuit. Sci. Am. 2001, 285, 59–64.

    Article  Google Scholar 

  96. [96]

    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.

    Article  Google Scholar 

  97. [97]

    Lieber, C. M. Nanoscience and nanotechnology: Building a big future from small things; New York Academy of Sciences: New York, 2002; pp 6–9.

    Google Scholar 

  98. [98]

    Duan, X.; Huang, Y.; Lieber, C. M. Nanowire nanocircuits. In McGraw-Hill Yearbook of Science and Technology. Licker, M. D. et al. Eds.; McGraw-Hill: 2003; pp 272–276.

    Google Scholar 

  99. [99]

    Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.

    Article  Google Scholar 

  100. [100]

    Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.

    Article  Google Scholar 

  101. [101]

    McAlpine, M. C.; Friedman, R. S.; Jin, S.; Lin, K.-H.; Wang, W. U.; Lieber, C. M. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 2003, 3, 1531–1535.

    Article  Google Scholar 

  102. [102]

    Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377–1379.

    Article  Google Scholar 

  103. [103]

    Jin, S.; Whang, D.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 2004, 4, 915–919.

    Article  Google Scholar 

  104. [104]

    Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.

    Article  Google Scholar 

  105. [105]

    Agarwal, R.; Ladavac, K.; Roichman, Y.; Yu, G. H.; Lieber, C. M.; Grier, D. G. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 2005, 13, 8906–8912.

    Article  Google Scholar 

  106. [106]

    Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.

    Article  Google Scholar 

  107. [107]

    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 2007, 6, 841–850.

    Article  Google Scholar 

  108. [108]

    Yan, H.; Choe, H. S.; Nam, S.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Programmable nanowire circuits for nanoprocessors. Nature 2011, 470, 240–244.

    Article  Google Scholar 

  109. [109]

    Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329–335.

    Article  Google Scholar 

  110. [110]

    Yao. J.; Yan, H.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Nanowire nanocomputer as a finite-state machine. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 2431–2435.

    Article  Google Scholar 

  111. [111]

    Huang, Y.; Duan, X. F.; Cui, Y.; Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2002, 2, 101–104.

    Article  Google Scholar 

  112. [112]

    Duan, X. F.; Huang, Y.; Cui, Y.; Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487–490.

    Article  Google Scholar 

  113. [113]

    Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

    Article  Google Scholar 

  114. [114]

    Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. High-speed integrated nanowire circuits. Nature 2005, 434, 1085.

    Article  Google Scholar 

  115. [115]

    McAlpine, M. C.; Friedman, R. S.; Lieber, C. M. High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc. IEEE 2005, 93, 1357–1363.

    Article  Google Scholar 

  116. [116]

    Hu, Y. J.; Xiang, J.; Liang, G.; Yan, H.; Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925–930.

    Article  Google Scholar 

  117. [117]

    Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 2008, 55, 2859–2876.

    Article  Google Scholar 

  118. [118]

    Nam, S.; Jiang, X. C.; Xiong, Q. H.; Ham, D.; Lieber, C. M. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21035–21038.

    Article  Google Scholar 

  119. [119]

    Zhong, Z. H.; Fang, Y.; Lu, W.; Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 2005, 5, 1143–1146.

    Article  Google Scholar 

  120. [120]

    Xiang, J.; Vidan, A.; Tinkham, M.; Westervelt, R. M.; Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 2006, 1, 208–213.

    Article  Google Scholar 

  121. [121]

    Hu, Y.; Churchill, H. O. H.; Reilly, D. J.; Xiang, J.; Lieber, C. M.; Marcus, C. M. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol. 2007, 2, 622–625.

    Article  Google Scholar 

  122. [122]

    Roddaro, S.; Fuhrer, A.; Brusheim, P.; Fasth, C.; Xu, H. Q.; Samuelson, L.; Xiang, J.; Lieber, C. M. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 2008, 101, 186802.

    Article  Google Scholar 

  123. [123]

    Zwanenburg, F. A.; van Rijmenam, C. E. W. M.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 2009, 9, 1071–1079.

    Article  Google Scholar 

  124. [124]

    Lee, E. J. H.; Jiang, X. C.; Aguado, R.; Katsaros, G.; Lieber, C. M.; De Franceschi, S. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 2012, 109, 186802.

    Article  Google Scholar 

  125. [125]

    Lee, E. J. H.; Jiang, X. C.; Houzet, M.; Aguado, R.; Lieber, C. M.; De Franceschi, S. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 2014, 9, 79–84.

    Article  Google Scholar 

  126. [126]

    Higginbotham, A.; Larsen, T. W.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M.; Kuemmeth, F. Hole spin coherence in a Ge/Si heterostructure nanowire. Nano Lett. 2014, 14, 3582–3586.

    Article  Google Scholar 

  127. [127]

    Higginbotham, A. P.; Kuemmeth, F.; Larsen, T. W.; Fitzpatrick, M.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M. Antilocalization of Coulomb blockade in Ge/Si nanowire. Phys. Rev. Lett. 2014, 112, 216806.

    Article  Google Scholar 

  128. [128]

    Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

    Article  Google Scholar 

  129. [129]

    Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245.

    Article  Google Scholar 

  130. [130]

    Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981–1985.

    Article  Google Scholar 

  131. [131]

    Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–920.

    Article  Google Scholar 

  132. [132]

    Greytak, A. B.; Barrelet, C. J.; Li, Y.; Lieber, C. M. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 2005, 87, 151103.

    Article  Google Scholar 

  133. [133]

    Gradečak, S.; Qian, F.; Li, Y.; Park, H.-G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.

    Article  Google Scholar 

  134. [134]

    Barrelet, C. J.; Bao, J. M.; Lončar, M.; Park, H.-G.; Capasso, F.; Lieber, C. M. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 2006, 6, 11–15.

    Article  Google Scholar 

  135. [135]

    Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly-sensitive and spatially-resolved photon detection. Nat. Mater. 2006, 5, 352–356.

    Article  Google Scholar 

  136. [136]

    Park, H.-G.; Barrelet, C. J.; Wu, Y. N.; Tian, B. Z.; Qian, F.; Lieber, C. M. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics 2008, 2, 622–626.

    Article  Google Scholar 

  137. [137]

    Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonicnanolaser. Nat. Comm. 2014, 5, 4953.

    Article  Google Scholar 

  138. [138]

    Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009, 38, 16–24.

    Article  Google Scholar 

  139. [139]

    Kim, S.-K.; Day, R. W.; Cahoon, J. F.; Kempa, T. J.; Song, K.-D.; Park, H.-G.; Lieber, C. M. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 2012, 12, 4971–4976.

    Article  Google Scholar 

  140. [140]

    Kempa, T. J.; Day, R. W.; Kim, S.-K.; Park, H.-G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719–733.

    Article  Google Scholar 

  141. [141]

    Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  142. [142]

    Yang, P. D.; Tarascon, J.-M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560–563.

    Article  Google Scholar 

  143. [143]

    Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Article  Google Scholar 

  144. [144]

    Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  145. [145]

    Hahm, J.-I.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.

    Article  Google Scholar 

  146. [146]

    Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14017–14022.

    Article  Google Scholar 

  147. [147]

    Wang, W. U.; Chen, C.; Lin, K.-H.; Fang, Y.; Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3208–3212.

    Article  Google Scholar 

  148. [148]

    Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  Google Scholar 

  149. [149]

    Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nanowire sensors for medicine and the life sciences. Nanomedicine 2006, 1, 51–65.

    Article  Google Scholar 

  150. [150]

    Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.

    Article  Google Scholar 

  151. [151]

    Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.

    Article  Google Scholar 

  152. [152]

    Timko, B. P.; Cohen-Karni, T.; Yu, G. H.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009, 9, 914–918.

    Article  Google Scholar 

  153. [153]

    Cohen-Karni, T.; Timko, B. P.; Weiss, L. E.; Lieber, C. M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7309–7313.

    Article  Google Scholar 

  154. [154]

    Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.

    Article  Google Scholar 

  155. [155]

    Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1882–1887.

    Article  Google Scholar 

  156. [156]

    Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010, 10, 1098–1102.

    Article  Google Scholar 

  157. [157]

    Timko, B. P.; Cohen-Karni, T.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 2010, 9, 269–280.

    Article  Google Scholar 

  158. [158]

    Zheng, G. F.; Gao, X. P. A.; Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179–3183.

    Article  Google Scholar 

  159. [159]

    Xie, P.; Xiong, Q. H.; Fang, Y.; Qing, Q.; Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 2012, 7, 119–125.

    Article  Google Scholar 

  160. [160]

    Duan, X. J.; Gao, R. X.; Xie, P.; Cohen-Karni, T.; Qing, Q.; Choe, H. S.; Tian, B. Z.; Jiang, X. C.; Lieber, C. M. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 2012, 7, 174–179.

    Article  Google Scholar 

  161. [161]

    Gao, R. X.; Strehle, S.; Tian, B. Z.; Cohen-Karni, T.; Xie, P.; Duan, X. J.; Qing, Q.; Lieber, C. M. Outside looking in: Nanotube transistor intracellular sensors. Nano Lett. 2012, 12, 3329–3333.

    Article  Google Scholar 

  162. [162]

    Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994.

    Article  Google Scholar 

  163. [163]

    Liu, J.; Xie, C.; Dai, X. C.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 6694–6699.

    Article  Google Scholar 

  164. [164]

    Tian, B. Z.; Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 2013, 6, 31–51.

    Article  Google Scholar 

  165. [165]

    Duan, X. J.; Fu, T.-M.; Liu, J.; Lieber, C. M. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 2013, 8, 351–373.

    Article  Google Scholar 

  166. [166]

    Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2014, 9, 142–147.

    Article  Google Scholar 

  167. [167]

    Fu, T.-M.; Duan, X. J.; Jiang, Z.; Dai, X. C.; Xie, P.; Cheng, Z. G.; Lieber, C. M. Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 1259–1264.

    Article  Google Scholar 

  168. [168]

    Zhou, W.; Dai, X. C.; Fu, T-M.; Xie, C.; Liu, J.; Lieber, C. M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 2014, 14, 1614–1619.

    Article  Google Scholar 

  169. [169]

    Xie, C.; Lin, Z. L.; Hanson, L.; Cui, Y.; Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 2012, 7, 185–190.

    Article  Google Scholar 

  170. [170]

    Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M.-H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180–184.

    Article  Google Scholar 

  171. [171]

    Shepherd, G. M. The Synaptic Organization of the Brain, 5th Ed.; Oxford Univ Press, Inc.: New York, 2004.

    Google Scholar 

  172. [172]

    Scanziani, M.; Häusser, M. Electrophysiology in the age of light. Nature 2009, 461, 930–939.

    Article  Google Scholar 

  173. [173]

    Seymour, J. P.; Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 2007, 28, 3594–3607.

    Article  Google Scholar 

  174. [174]

    Viventi, J.; Kim, D.-H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y.-S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S.-W.; Vanleer, A. C.; et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605.

    Article  Google Scholar 

  175. [175]

    Erickson, J.; Tooker, A.; Tai, Y. C.; Pine, J. Caged neuron MEA: Asystem for long-term investigation of cultured neural network connectivity. J. Neurosci. Methods 2008, 175, 1–16.

    Article  Google Scholar 

  176. [176]

    Egert, U.; Heck, D.; Aertsen, A. Two-dimensional monitoring of spiking networks in acute brain slices. Exp. Brain Res. 2002, 142, 268–274.

    Article  Google Scholar 

  177. [177]

    Wirth, C.; Lüscher, H. R. Spatiotemporalevolution of excitation and inhibition in the rat barrel cortex investigated with multielectrodearrays. J. Neurophysiol. 2004, 91, 1635–1647.

    Article  Google Scholar 

  178. [178]

    Frey, U.; Egert, U.; Heer, F.; Hafizovic, S.; Hierlemann, A. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 2009, 24, 2191–2198.

    Article  Google Scholar 

  179. [179]

    Stangl, C.; Fromherz, P. Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur. J. Neurosci. 2008, 27, 958–964.

    Article  Google Scholar 

  180. [180]

    Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology; John Wiley & Sons, Ltd.: Chichester, West Sussex, England, 2003.

    Google Scholar 

  181. [181]

    Davie, J. T.; Kole, M. H. P.; Letzkus, J. J.; Rancz, E. A.; Spruston, N.; Stuart, G. J.; Häusser, M. Dendritic patchclamp recording. Nat. Protoc. 2006, 1, 1235–1247.

    Article  Google Scholar 

  182. [182]

    Duan, X. J.; Lieber, C. M. Nanoelectronicsmeets biology: From new nanoscaledevices for live-cell recording to 3D innervated tissues. Chem. Asian J. 2013, 8, 2304–2314.

    Article  Google Scholar 

  183. [183]

    Bers, D. M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205.

    Article  Google Scholar 

  184. [184]

    Koch, C.; Reid, R. C. Neuroscience: Observatories of the mind. Nature 2012, 483, 397–398.

    Article  Google Scholar 

  185. [185]

    Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13–22.

    Article  Google Scholar 

  186. [186]

    Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; Jin, H. W.; Parker, K. K.; Langer, R.; Kohane, D. S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011, 6, 720–725.

    Article  Google Scholar 

  187. [187]

    Kim, D.-H.; Lu, N. S.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science, 2011, 333, 838–843.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaojie Duan or Charles M. Lieber.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Lieber, C.M. Nanoscience and the nano-bioelectronics frontier. Nano Res. 8, 1–22 (2015). https://doi.org/10.1007/s12274-014-0692-8

Download citation

Keywords

  • one-dimensional materials
  • two-dimensional materials
  • nanowires
  • carbon nanotubes
  • bottom-up paradigm
  • nanoelectronics
  • nanoelectronic arrays
  • neural probes
  • electrophysiology
  • neural circuits
  • brain activity map
  • chronic recording and stimulation
  • brain-machine interfaces