Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution


Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical simulations have been instrumental in revealing the correlations between the electronic structure of materials and their catalytic activity, and guide the prediction and development of improved catalysts. However, difficulties in accurately engineering the desired atomic sites lead to challenges in making direct comparisons between experimental and theoretical results. In MoS2, the Mo-edge has been demonstrated to be active for HER whereas the S-edge is inert. Using a computational descriptor-based approach, we predict that by incorporating transition metal atoms (Fe, Co, Ni, or Cu) the S-edge site should also become HER active. Vertically standing, edge-terminated MoS2 nanofilms provide a well-defined model system for verifying these predictions. The transition metal doped MoS2 nanofilms show an increase in exchange current densities by at least two-fold, in agreement with the theoretical calculations. This work opens up further opportunities for improving electrochemical catalysts by incorporating promoters into particular atomic sites, and for using well-defined systems in order to understand the origin of the promotion effects.

This is a preview of subscription content, log in to check access.


  1. [1]

    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  2. [2]

    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 2006, 103, 15729–15735.

    Article  Google Scholar 

  3. [3]

    Hinnemann, B.; Moses, P. G.; Bonde, J. L.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  4. [4]

    Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  5. [5]

    Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. American Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  6. [6]

    Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. American Chem. Soc. 2008, 130, 7176–7177.

    Article  Google Scholar 

  7. [7]

    Prins, R.; De Beer, V. H. J.; Somorjai, G. A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts. Catal. Rev. 1989, 31, 1–41.

    Article  Google Scholar 

  8. [8]

    Coulier, L.; de Beer, V. H. J.; van Veen, J. A. R.; Niemantsverdriet, J. W. On the formation of cobalt-molybdenum sulfides in silica-supported hydrotreating model catalysts. Topics in Catal. 2000, 13, 99–108.

    Article  Google Scholar 

  9. [9]

    Jaramillo, T. F.; Bonde, J.; Zhang, J.; Ooi, B.-L.; Andersson, K.; Ulstrup, J.; Chorkendorff, I. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 2008, 112, 17492–17498.

    Article  Google Scholar 

  10. [10]

    Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J. A Molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

    Article  Google Scholar 

  11. [11]

    Vrubel, H.; Merki, D.; Hu, X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy & Environ. Sci. 2012, 5, 6136–6144.

    Article  Google Scholar 

  12. [12]

    Laursen, A. B.; Kegnaes, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy & Environ. Sci. 2012, 5, 5577–5591.

    Article  Google Scholar 

  13. [13]

    Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2008, 140, 219.

    Article  Google Scholar 

  14. [14]

    Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

    Article  Google Scholar 

  15. [15]

    Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Defect-Rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    Article  Google Scholar 

  16. [16]

    Lu, Z.; Zhang, H.; Zhu, W.; Yu, X.; Kuang, Y.; Chang, Z.; Lei, X.; Sun, X. In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chemical Commun. 2013, 49, 7516–7518.

    Article  Google Scholar 

  17. [17]

    Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 2012, 11, 963–969.

    Article  Google Scholar 

  18. [18]

    Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

    Article  Google Scholar 

  19. [19]

    Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem.l Sci. 2011, 2, 1262–1267.

    Article  Google Scholar 

  20. [20]

    Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catalysis 2012, 2, 1916–1923.

    Article  Google Scholar 

  21. [21]

    Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science 3, 2515–2525.

  22. [22]

    Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

    Article  Google Scholar 

  23. [23]

    Wang, H.; Lu, Z.; Xu, S.; Kong, D.; Cha, J. J.; Zheng, G.; Hsu, P.-C.; Yan, K.; Bradshaw, D.; Prinz, F. B.; Cui, Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Nat. Acad. Sci. 2013, 110, 19701–19706.

    Article  Google Scholar 

  24. [24]

    Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426–3433.

    Article  Google Scholar 

  25. [25]

    Wang, H.; Zhang, Q.; Yao, H.; Liang, Z.; Lee, H.-W.; Hsu, P.-C.; Zheng, G.; Cui, Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014, 10.1021/nl503730c.

    Google Scholar 

  26. [26]

    Tsai, C.; Abild-Pedersen, F.; Nørskov, J. K. Tuning the MoS2 Edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381–1387.

    Article  Google Scholar 

  27. [27]

    Lauritsen, J. V.; Kibsgaard, J.; Olesen, G. H.; Moses, P. G.; Hinnemann, B.; Helveg, S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E. Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 2007, 249, 220–233.

    Article  Google Scholar 

  28. [28]

    Bouwens, S. M. A. M.; Vanzon, F. B. M.; Vandijk, M. P.; Vanderkraan, A. M.; Debeer, V. H. J.; Vanveen, J. A. R.; Koningsberger, D. C. On the structural differences between alumina-supported comos type I and alumina-, silica-, and carbon-supported comos type II phases studied by XAFS, MES, and XPS. J. Catal. 1994, 146, 375–393.

    Article  Google Scholar 

  29. [29]

    Byskov, L. S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H. DFT Calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 1999, 187, 109–122.

    Article  Google Scholar 

  30. [30]

    Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

    Article  Google Scholar 

  31. [31]

    Nørskov, J. K.; Bligaard, T.; Logadóttir, Á.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. In J. Electrochem. Soc., 2005; pp J23–J26.

    Google Scholar 

  32. [32]

    Kibsgaard, J.; Tuxen, A.; Knudsen, K. G.; Brorson, M.; Topsøe, H.; Lægsgaard, E.; Lauritsen, J. V.; Besenbacher, F. Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. J. Catal. 2010, 272, 195–203.

    Article  Google Scholar 

  33. [33]

    Schweiger, P. R. H. Hervé toulhoat promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions. J. Catal. 2002, 212, 33–38.

    Article  Google Scholar 

  34. [34]

    Tsai, C.; Chan, K.; Abild-Pedersen, F.; Norskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164.

    Article  Google Scholar 

  35. [35]

    Patterson, T. A.; Carver, J. C.; Leyden, D. E.; Hercules, D. M. A surface study of cobalt-molybdena-alumina catalysts using X-ray photoelectron spectroscopy. J. Phys. Chem. 1976, 80, 1700–1708.

    Article  Google Scholar 

  36. [36]

    Muijsers, J. C.; Weber, T.; Vanhardeveld, R. M.; Zandbergen, H. W.; Niemantsverdriet, J. W. Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and Mo-IV3-sulfur cluster compounds. J. Catal. 1995, 157, 698–705.

    Article  Google Scholar 

  37. [37]

    Stacy, A. M.; Hodul, D. T. Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solid. 1985, 46, 405–409.

    Article  Google Scholar 

  38. [38]

    Wieting, T. J.; Verble, J. L. Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 1971, 3, 4286–4292.

    Article  Google Scholar 

  39. [39]

    Castellanos-Gomez, A.; van der Zant, H. J.; Steele, G. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 1–7.

    Article  Google Scholar 

  40. [40]

    Zhou, H.; Yu, F.; Liu, Y.; Zou, X.; Cong, C.; Qiu, C.; Yu, T.; Yan, Z.; Shen, X.; Sun, L.; Yakobson, B.; Tour, J. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.

    Article  Google Scholar 

  41. [41]

    Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Koon, G.; Zhao, W.; Castro Neto, A. H.; Eda, G.; Shen, C.; Özyilmaz, B. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200–207.

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Jens K. Nørskov or Yi Cui.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tsai, C., Kong, D. et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8, 566–575 (2015).

Download citation


  • molybdenum disulfide
  • chemical vapor deposition
  • doping
  • density functional theory