Skip to main content
Log in

Controlled synthesis of single-crystal SnSe nanoplates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional layered IV–VI chalcogenides are attracting great interest for applications in next-generation optoelectronic, photovoltaic, and thermoelectric devices. However, great challenges in the controllable synthesis of high-quality IV–VI chalcogenide nanostructures have hindered their in-depth studies and practical applications to date. Here we report, for the first time, a feasible synthesis of single-crystal IV–VI SnSe nanoplates in a controlled manner on mica substrates by vapor transport deposition. The as-grown SnSe nanoplates have approximately square shapes with controllable side lengths varying from 1 to 6 μm. Electrical transport and optoelectronic measurements show that as-obtained SnSe nanoplates display p-type conductivity and high photoresponsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  3. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

    Article  Google Scholar 

  4. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  5. Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Edit. 2010, 49, 4059–4062.

    Article  Google Scholar 

  6. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotech 2011, 6, 147–150.

    Article  Google Scholar 

  7. Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  8. Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 2009, 462, 196–199.

    Article  Google Scholar 

  9. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech 2010, 5, 722–726.

    Article  Google Scholar 

  10. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  11. Kong, D. S.; Randel, J. C.; Peng, H. L.; Cha, J. J.; Meister, S.; Lai, K. J.; Chen, Y. L.; Shen, Z. X.; Manoharan, H. C.; Cui, Y. Topological insulator nanowires and nanoribbons. Nano Lett. 2010, 10, 329–333.

    Article  Google Scholar 

  12. Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X. L.; Zhang, S. C.; Shen, Z. X.; Cui, Y. Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.

    Google Scholar 

  13. Chun, D.; Walser, R. M.; Bene, R. W.; Courtney, T. H. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl. Phys. Lett. 1974, 24, 479–481.

    Article  Google Scholar 

  14. Agarwal, A.; Vashi, M. N.; Lakshminarayana, D.; Batra, N. M. Electrical resistivity anisotropy in layered p-SnSe single crystals. J. Mater. Sci-Mater. El. 2000, 11, 67–71.

    Article  Google Scholar 

  15. Boscher, N. D.; Carmalt, C. J.; Palgrave, R. G.; Parkin, I. P. Atmospheric pressure chemical vapor deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 2008, 516, 4750–4757.

    Article  Google Scholar 

  16. Sumesh, C. K.; Patel, M.; Patel, K. D.; Solanki, G. K.; Pathak, V. M.; Srivastav, R. Low temperature electrical transport properties in p-SnSe single crystals. Eur. Phys. J-Appl.Phys. 2011, 53, 10302.

    Article  Google Scholar 

  17. Xue, M. Z.; Yao, J.; Cheng, S. C.; Fu, Z. W. Lithium electrochemistry of a novel SnSe thin-film anode. J. Electrochem. Soc. 2006, 153, A270–A274.

    Article  Google Scholar 

  18. Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.

    Article  Google Scholar 

  19. Baumgardner, W. J.; Choi, J. J.; Lim, Y. F.; Hanrath, T. SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 2010, 132, 9519–9521.

    Article  Google Scholar 

  20. Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4062.

    Article  Google Scholar 

  21. Liu, S.; Guo, X. Y.; Li, M. R.; Zhang, W. H.; Liu, X. Y.; Li, C. Solution-phase synthesis and characterization of single-crystalline SnSe nanowires. Angew. Chem. Int. Edit. 2011, 50, 12050–12053.

    Article  Google Scholar 

  22. Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

    Article  Google Scholar 

  23. Car, R.; Ciucci, G.; Quartapelle, L. Electronic Band-Structure of SnSe. Phys. Status. Solidi. B. 1978, 86, 471–478.

    Article  Google Scholar 

  24. Li, L.; Chen, Z.; Hu, Y.; Wang, X. W.; Zhang, T.; Chen, W.; Wang, Q. B. Single-layer single-crystalline snse nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216.

    Article  Google Scholar 

  25. Vaughn, D. D.; In, S. I.; Schaak, R. E. A Precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS nano 2011, 5, 8852–8860.

    Article  Google Scholar 

  26. Tritsaris, G. A.; Malone, B. D.; Kaxiras, E. Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study. J. Appl. Phys. 2013, 113, 233507.

    Article  Google Scholar 

  27. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech 2012, 7, 699–712.

    Article  Google Scholar 

  28. Antunez, P. D.; Buckley, J. J.; Brutchey, R. L. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 2011, 3, 2399–2411.

    Article  Google Scholar 

  29. Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.

    Article  Google Scholar 

  30. Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.

    Article  Google Scholar 

  31. Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, W.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

    Article  Google Scholar 

  32. Colin, R.; J. Drowart, J. Thermodynamic study of tin selenide and tin telluride using a mass spectrometer. J. Trans. Faraday Soc. 1964, 60, 673–683.

    Article  Google Scholar 

  33. Vaughn, D. D.; Patel, R. J.; Hickner, M. A.; Schaak, R. E. Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132, 15170–15172.

    Article  Google Scholar 

  34. Yoon, S. M.; Song, H. J.; Choi, H. C. p-Type Semiconducting GeSe combs by a vaporization-condensation-recrystallization (VCR) process. Adv. Mater. 2010, 22, 2164–2167.

    Article  Google Scholar 

  35. Xue, D. J.; Tan, J. H.; Hu, J. S.; Hu, W. P.; Guo, Y. G.; Wan, L. J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533.

    Article  Google Scholar 

  36. Chandrasekhar, H. R.; Humphreys, R. G.; Zwick, U.; Cardona, M. Infrared and Raman spectra ofthe IV–VI compounds SnS and SnSe. Phys. Rev. B 1977, 15, 2177–2183.

    Article  Google Scholar 

  37. Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 014507.

    Article  Google Scholar 

  38. Maier, H.; Daniel, D. R. SnSe single-crystals-sublimation growth, deviation from stoichiometry and electrical-properties. J. Electron. Mater. 1977, 6, 693–704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailin Peng or Zhongfan Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wang, H., Zhou, Y. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 8, 288–295 (2015). https://doi.org/10.1007/s12274-014-0676-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0676-8

Keywords

Navigation