Skip to main content

MoS2-wrapped silicon nanowires for photoelectrochemical water reduction

Abstract

Integration of molybdenum disulfide (MoS2) onto high surface area photocathodes is highly desired to minimize the overpotential for the solar-powered hydrogen evolution reaction (HER). Semiconductor nanowires (NWs) are beneficial for use in photoelectrochemistry because of their large electrochemically available surface area and inherent ability to decouple light absorption and the transport of minority carriers. Here, silicon (Si) NW arrays were employed as a model photocathode system for MoS2 wrapping, and their solar-driven HER activity was evaluated. The photocathode is made up of a well-defined MoS2/TiO2/Si coaxial NW heterostructure, which yielded photocurrent density up to 15 mA/cm2 (at 0 V vs. the reversible hydrogen electrode (RHE)) with good stability under the operating conditions employed. This work reveals that earth-abundant electrocatalysts coupled with high surface area NW electrodes can provide performance comparable to noble metal catalysts for photocathodic hydrogen evolution.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  Google Scholar 

  2. [2]

    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  3. [3]

    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729–15735.

    Article  Google Scholar 

  4. [4]

    Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A.; et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 2011, 133, 1216–1219.

    Article  Google Scholar 

  5. [5]

    Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 2013, 135, 12932–12935.

    Article  Google Scholar 

  6. [6]

    Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 2011, 334, 645–648.

    Article  Google Scholar 

  7. [7]

    McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573–3583.

    Article  Google Scholar 

  8. [8]

    Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem. Inter. Ed. 2012, 51, 6131–6135.

    Article  Google Scholar 

  9. [9]

    Vrubel, H.; Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Inter. Ed. 2012, 124, 12875–12878.

    Article  Google Scholar 

  10. [10]

    Chen, W. F.; Wang, C.-H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943–951.

    Article  Google Scholar 

  11. [11]

    Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  12. [12]

    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  Google Scholar 

  13. [13]

    Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

    Article  Google Scholar 

  14. [14]

    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  15. [15]

    Sun, Y. J.; Liu, C.; Grauer, D. C.; Yano, J. K.; Long, J. R.; Yang, P. D.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, 17699–17702.

    Article  Google Scholar 

  16. [16]

    Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.

    Article  Google Scholar 

  17. [17]

    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  18. [18]

    Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.

    Article  Google Scholar 

  19. [19]

    Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

    Article  Google Scholar 

  20. [20]

    Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Bjorketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O.; et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 2011, 10, 434–438.

    Article  Google Scholar 

  21. [21]

    Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  22. [22]

    Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

    Article  Google Scholar 

  23. [23]

    Zhou, H.; Yu, F.; Liu, Y.; Zou, X.; Cong, C.; Qiu, C.; Yu, T.; Yan, Z.; Shen, X.; Sun, L. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.

    Article  Google Scholar 

  24. [24]

    Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Koon, G.; Zhao, W.; Neto, A.; Eda, G. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200–207.

    Article  Google Scholar 

  25. [25]

    Liu, C.; Dasgupta, N. P.; Yang, P. D. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 2014, 26, 415–422.

    Article  Google Scholar 

  26. [26]

    Yang, P. D.; Yan, R. X.; Fardy, M. Semiconductor nanowire: What’s next? Nano Lett. 2010, 10, 1529–1536.

    Article  Google Scholar 

  27. [27]

    Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. S. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 2010, 327, 185–187.

    Article  Google Scholar 

  28. [28]

    Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 2013, 135, 1057–1064.

    Article  Google Scholar 

  29. [29]

    Brito, J. L.; Ilija, M.; Hernández, P. Thermal and reductive decomposition of ammonium thiomolybdates. Thermochim. Acta 1995, 256, 325–338.

    Article  Google Scholar 

  30. [30]

    Liu, K. K.; Zhang, W. J; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

    Article  Google Scholar 

  31. [31]

    Tributsch, H.; Bennett, J. C. Electrochemistry and photochemistry of MoS2 layer crystals. J. Electroanal. Chem. 1977, 81, 97–111.

    Article  Google Scholar 

  32. [32]

    Gomez, A.; van der Zant, H.; Steele, G. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 1–7.

    Article  Google Scholar 

  33. [33]

    Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew Chem. Int. Ed. 2012, 5, 9128–9131.

    Article  Google Scholar 

  34. [34]

    Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, C., Wong, A.B. et al. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 8, 281–287 (2015). https://doi.org/10.1007/s12274-014-0673-y

Download citation

Keywords

  • MoS2
  • Si nanowire array
  • coaxial heterostructure
  • photoelectrochemistry
  • hydrogen evolution reaction (HER)