Nano Research

, Volume 8, Issue 5, pp 1698–1709

Functionalized CVD monolayer graphene for label-free impedimetric biosensing

  • Shimaa Eissa
  • Gaston Contreras Jimenez
  • Farzaneh Mahvash
  • Abdeladim Guermoune
  • Chaker Tlili
  • Thomas Szkopek
  • Mohammed Zourob
  • Mohamed Siaj
Research Article


Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate was examined as electrode material for electrochemical biosensing applications. We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (EIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]3−/4− solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL−1 to 100 ng·mL−1, with a detection limit of 0.9 pg·mL−1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.


CVD grapheme electrochemical impedance spectroscopy Biosensor diazonium functionalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_671_MOESM1_ESM.pdf (924 kb)
Supplementary material, approximately 923 KB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; I. Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  3. [3]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  4. [4]
    Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater 2010, 35, 52–71.CrossRefGoogle Scholar
  5. [5]
    Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 2009, 48, 4785–4787.CrossRefGoogle Scholar
  6. [6]
    Chang, H. X.; Tang, L. H.; Wang, Y.; Jiang, J. H.; Li., J. H. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 2010, 2341–2346.Google Scholar
  7. [7]
    Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem. Int. Ed. 2010, 49, 5708–5711.CrossRefGoogle Scholar
  8. [8]
    Islam, M. S.; Kouzani, A. Z.; Dai, X. J.; Michalski, W. P.; GholamHosseini, H. Comparison of performance parameters for conventional and localized surface plasmon resonance graphene biosensors. In Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, 2011; pp 1851–1854.CrossRefGoogle Scholar
  9. [9]
    Choi, S. H.; Kim, Y. L.; Byun, K. M. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Express 2011, 19, 458–466.CrossRefGoogle Scholar
  10. [10]
    Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.CrossRefGoogle Scholar
  11. [11]
    Song, Y. J.; Chen, Y.; Feng, L. Y.; Ren, J. S.; Qu, X. G. Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem. Commun. 2011, 47, 4436–4438.CrossRefGoogle Scholar
  12. [12]
    Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E.; Dong, S. J. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290.CrossRefGoogle Scholar
  13. [13]
    Mao, S.; Yu, K. H.; Chang, J. B.; Steeber, D. A.; Ocola, L. E.; Chen, J. H. Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 2013, 3. 1696.Google Scholar
  14. [14]
    Ohno, Y.; Maehashi, K.; Matsumoto, K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 2010, 132, 18012–18013.CrossRefGoogle Scholar
  15. [15]
    Jiang, S.; Cheng, R.; Wang, X.; Xue, T.; Liu, Y.; Nel, A.; Huang, Y.; Duan, X. F. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat. Comm. 2013, 4, 2225.Google Scholar
  16. [16]
    Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.CrossRefGoogle Scholar
  17. [17]
    Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315.CrossRefGoogle Scholar
  18. [18]
    Du, D.; Wang, L. M.; Shao, Y. Y.; Wang, J.; Engelhard, M. H.; Lin, Y. H. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal. Chem. 2011, 83, 746–752.CrossRefGoogle Scholar
  19. [19]
    Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.-Z. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J. Phy. Chem. C. 2009, 113, 8853–8857.CrossRefGoogle Scholar
  20. [20]
    Wang, Y.; Li, Y. M.; Tang, L. H.; Lu, J.; Li, J. H. Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Comm. 2009, 11, 889–892.CrossRefGoogle Scholar
  21. [21]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  22. [22]
    Kuila, T.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 2013, 5, 52–71.CrossRefGoogle Scholar
  23. [23]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  24. [24]
    Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. D.; Ralph, D. C. Electrochemistry of individual monolayer graphene sheets. ACS Nano 2011, 5, 2264–2270.CrossRefGoogle Scholar
  25. [25]
    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  26. [26]
    Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214.CrossRefGoogle Scholar
  27. [27]
    Paulus, G. L. C.; Wang, Q. H.; Strano, M. S. Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 2013, 46, 160–170.CrossRefGoogle Scholar
  28. [28]
    Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337.CrossRefGoogle Scholar
  29. [29]
    Jin, Z.; Lomeda, J. R.; Price, B. K.; Lu, W.; Zhu, Y.; Tour, J. M. Mechanically assisted exfoliation and functionalization of thermally converted graphene sheets. Chem. Mater. 2009, 21, 3045–3047.CrossRefGoogle Scholar
  30. [30]
    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.CrossRefGoogle Scholar
  31. [31]
    Lim, H.; Lee, J. S.; Shin, H.-J.; Shin, H. S.; Choi, H. C. Spatially resolved spontaneous reactivity of diazonium salt on edge and basal plane of graphene without surfactant and its doping effect. Langmuir 2010, 26, 12278–12284.CrossRefGoogle Scholar
  32. [32]
    Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C.-J.; Ham, M.-H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012, 4, 724–732.CrossRefGoogle Scholar
  33. [33]
    Jin, Z.; McNicholas, T. P.; Shih, C.-J.; Wang, Q. H.; Paulus, G. L. C.; Hilmer, A.; Shimizu, S.; Strano, M. S. Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chem. Mater. 2011, 23, 3362–3370.CrossRefGoogle Scholar
  34. [34]
    Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010, 10, 398–405.CrossRefGoogle Scholar
  35. [35]
    Eissa, S.; Tlili, C.; L’Hocine, L.; Zourob, M. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens. Bioelectron. 2012, 38, 308–313.CrossRefGoogle Scholar
  36. [36]
    Eissa, S.; L’Hocine, L.; Siaj, M.; Zourob, M. A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin. Analyst 2013, 138, 4378–4384.CrossRefGoogle Scholar
  37. [37]
    Eissa, S.; Zourob, M. A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish. Nanoscale 2012, 4, 7593–7599.CrossRefGoogle Scholar
  38. [38]
    Gan, L.; Zhang, D. Y.; Guo, X. F. Electrochemistry: An efficient way to chemically modify individual monolayers of graphene. Small 2012, 8, 1326–1330.CrossRefGoogle Scholar
  39. [39]
    Lillethorup, M.; Kongsfelt, M.; Ceccato, M.; Jensen, B. B. E.; Jørgensen, B.; Pedersen, S. U.; Daasbjerg, K. High-versus low-quality graphene: A mechanistic investigation of electrografted diazonium-based films for growth of polymer brushes. Small 2014, 10, 922–934.CrossRefGoogle Scholar
  40. [40]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  41. [41]
    Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 2011, 49, 4204–4210.CrossRefGoogle Scholar
  42. [42]
    Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.CrossRefGoogle Scholar
  43. [43]
    Combellas, C.; Jiang, D.-E.; Kanoufi, F.; Pinson, J.; Podvorica, F. I. Steric effects in the reaction of aryl radicals on surfaces. Langmuir 2009, 25, 286–293.CrossRefGoogle Scholar
  44. [44]
    Laforgue, A.; Addou, T.; Bélanger, D. Characterization of the deposition of organic molecules at the surface of gold by the electrochemical reduction of aryldiazonium cations. Langmuir 2005, 21, 6855–6865.CrossRefGoogle Scholar
  45. [45]
    Cui, R. J.; Pan, H.-C.; Zhu, J.-J.; Chen, H.-Y. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal. Chem. 2007, 79, 8494–8501.CrossRefGoogle Scholar
  46. [46]
    Liu, X. Q.; Duckworth, P. A.; Wong, D. K. Y. Square wave voltammetry versus electrochemical impedance spectroscopy as a rapid detection technique at electrochemical immunosensors. Biosens. Bioelectron. 2010, 25, 1467–1473.CrossRefGoogle Scholar
  47. [47]
    Laforgue, A.; addou, T.; Bélanger, D. Characterization of the deposition of organic molecules at the surface of gold by the electrochemical reduction of aryldiazonium cations. Langmuir 2005, 21, 6855–6865.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shimaa Eissa
    • 1
    • 2
  • Gaston Contreras Jimenez
    • 2
  • Farzaneh Mahvash
    • 2
    • 3
  • Abdeladim Guermoune
    • 2
  • Chaker Tlili
    • 1
  • Thomas Szkopek
    • 3
  • Mohammed Zourob
    • 4
  • Mohamed Siaj
    • 2
  1. 1.Institut national de la recherche scientifiqueCentre — Energie, Matériaux et TélécommunicationsVarennesCanada
  2. 2.Département de Chimie et BiochimieUniversité du Québec à MontréalMontréalCanada
  3. 3.Dept. of Electrical and Computer EngineeringMcGill UniversityMontréalCanada
  4. 4.Cranfield Health, Vincent BuildingCranfield UniversityCranfield, BedfordshireUK

Personalised recommendations