Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride

Abstract

Understanding layer interplay is the key to utilizing layered heterostructures formed by the stacking of different two-dimensional materials for device applications. Boron nitride has been demonstrated to be an ideal substrate on which to build graphene devices with improved mobilities. Here we present studies on the morphology and optical response of annealed few-layer hexagonal boron nitride flakes deposited on a silicon substrate that reveal the formation of linear wrinkles along well-defined crystallographic directions. The wrinkles formed a network of primarily threefold and occasionally fourfold origami-type junctions throughout the sample, and all threefold junctions and wrinkles formed along the armchair crystallographic direction. Furthermore, molecular dynamics simulations yielded, through spontaneous symmetry breaking, wrinkle junction morphologies that are consistent with both the experimental results and the proposed origami-folding model. Our findings indicate that this morphology may be a general feature of several two-dimensional materials under proper stress-strain conditions, resulting in direct consequences in device strain engineering.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Bower, A. F. Applied Mechanics of Solids; CRC Press: Florida, 2009.

    Google Scholar 

  2. [2]

    Lakes, R. Foam structures with a negative Poisson’s ratio. Science 1987, 235, 1038–1040.

    Article  Google Scholar 

  3. [3]

    Baughman, R. H.; Stafstrom, S.; Cui, C.; Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524.

    Article  Google Scholar 

  4. [4]

    Barboza, A. P. M.; Chacham, H.; Oliveira, C. K.; Fernandes, T. F. D.; Martins Ferreira, E. H.; Archanjo, B. S.; Batista, R. J. C.; de Oliveira, A. B.; Neves, B. R. A. Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett. 2012, 12, 2313–2317.

    Article  Google Scholar 

  5. [5]

    Cairns, A. B.; Catafesta, J.; Levelut, C.; Rouquette, J.; van der Lee, A.; Peters, L.; Thompson, A. L.; Dmitriev, V.; Haines, J.; Goodwin, A. L. Giant negative linear compressibility in zinc dicyanoaurate. Nat. Mater. 2013, 12, 212–216.

    Article  Google Scholar 

  6. [6]

    Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina A. V.; Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.

    Article  Google Scholar 

  7. [7]

    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  8. [8]

    Xu, K.; Cao, P.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446–4451.

    Article  Google Scholar 

  9. [9]

    Robertson, A. W.; Bachmatiuk, A.; Wu, Y. A.; Schäffel, F.; Büchner, B.; Rümmeli, M. H.; Warner, J. H. Structural distortions in few-layer graphene creases. ACS Nano 2011, 5, 9984–9991.

    Article  Google Scholar 

  10. [10]

    Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.

    Article  Google Scholar 

  11. [11]

    Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Kok, G.; Koon, W.; Zhao, W.; Castro Neto, A. H.; Eda, G.; Shen, C.; Özyilmaz, B. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200–207.

    Article  Google Scholar 

  12. [12]

    Lherbier, A.; Roche, S.; Restrepo, O. A.; Niquet, Y. M.; Delcorte, A.; Charlier, J. C.; Highly defective graphene: A key prototype of two dimensional Anderson insulators. Nano Res. 2013, 6, 326–334.

    Article  Google Scholar 

  13. [13]

    Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

    Article  Google Scholar 

  14. [14]

    Zhang, K.; Arroyo, M. Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 2014, 72, 61–74.

    Article  Google Scholar 

  15. [15]

    Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.

    Article  Google Scholar 

  16. [16]

    Feng, J.; Qian, X.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.

    Article  Google Scholar 

  17. [17]

    Naumov, I.; Bratkovsky, A. M.; Ranjan, V. Unusual flexoelectric effect in twodimensional noncentrosymmetric sp2-bonded crystals. Phys. Rev. Lett. 2009, 102, 217601.

    Article  Google Scholar 

  18. [18]

    Roy, K.; Bandyopadhyay, S.; Atulasimha, J. Hybrid spintronics and straintronics: A magnetic technology for ultra-low energy computing and signal processing. Appl. Phys. Lett 2011, 99, 063108.

    Article  Google Scholar 

  19. [19]

    Pan, Z.; Liu, N.; Fu, L.; Liu, Z. Wrinkle engineering: A new approach to massive graphene nanoribbon arrays. J. Am. Chem. Soc. 2011, 133, 17578–17581.

    Article  Google Scholar 

  20. [20]

    Prado, M. C.; Nascimento, R.; Moura, L. G.; Matos, M. J. S.; Mazzoni, M. S. C.; Cancado, L. G.; Chacham, H.; Neves, B. R. A. Two-dimensional molecular crystals of phosphonic acids on graphene. ACS Nano 2011, 5, 394–398.

    Article  Google Scholar 

  21. [21]

    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 2010, 5, 722–726.

    Article  Google Scholar 

  22. [22]

    Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 40, A1133–A1138.

    Article  Google Scholar 

  23. [23]

    Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-n materials simulation. Condens. Matter 2002, 14, 2745–2779.

    Article  Google Scholar 

  24. [24]

    Malard, L. M.; Alencar, T. V.; Barboza, A. P. M.; Mak, K. F.; de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 2013, 87, 201401.

    Article  Google Scholar 

  25. [25]

    Li, Y.; Rao, Y.; Mak, K. F.; You, Y.; Wang, S.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

    Article  Google Scholar 

  26. [26]

    Paszkowicz, W.; Pelka, J. B.; Knapp, M.; Szyszko, T.; Podsiadlo, S. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10-297.5 K temperature range. Appl. Phys. A 2002, 75, 431–435.

    Article  Google Scholar 

  27. [27]

    Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.

    Article  Google Scholar 

  28. [28]

    Kim, K.; Artyukhov, V. I.; Regan, W.; Liu, Y.; Crommie, M. F.; Yakobson, B. I.; Zettl, A. Ripping graphene: Preferred directions. Nano Lett. 2012, 12, 293–297.

    Article  Google Scholar 

  29. [29]

    Oliveira, C. K.; Matos, M. J. S.; Mazzoni, M. S. C.; Chacham, H.; Neves, B. R. A. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: A confined water effect? Nanotechnology 2012, 23, 175703.

    Article  Google Scholar 

  30. [30]

    Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19.

    Article  Google Scholar 

  31. [31]

    Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991.

    Article  Google Scholar 

  32. [32]

    Albe, K.; Möller, W. Modelling of boron nitride: Atomic scale simulations on thin film growth. Comp. Mat. Sci. 1998, 10, 111–115.

    Article  Google Scholar 

  33. [33]

    Dappe, Y. J.; Basanta, M. A.; Flores, F.; Ortega, J. Weak chemical interaction and van der Waals forces between graphene layers: A combined density functional and intermolecular perturbation theory approach. Phys. Rev. B 2006, 74, 205434.

    Article  Google Scholar 

  34. [34]

    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511.

    Article  Google Scholar 

  35. [35]

    Hoover, W. G. Canonical dynamics: Equilibrium phase-space equations. Phys. Rev. A 1985, 31, 1695.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernardo R. A. Neves.

Electronic supplementary material

Supplementary material, approximately 665 KB.

Supplementary material, approximately 28.8 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C.K., Gomes, E.F.A., Prado, M.C. et al. Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride. Nano Res. 8, 1680–1688 (2015). https://doi.org/10.1007/s12274-014-0665-y

Download citation

Keywords

  • hexagonal boron nitride
  • 2D materials
  • wrinkles
  • origami folding
  • annealing