Nano Research

, Volume 8, Issue 2, pp 502–511 | Cite as

Carboxyl groups trigger the activity of carbon nanotube catalysts for the oxygen reduction reaction and agar conversion

Research Article


Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural properties and chemical activity. In order to detail the effect of each functional group, we correlated the activity with the surface density of each group, and found that the carboxyl groups play a pivotal role in two important catalytic reactions, namely the electrochemical oxygen reduction reaction (ORR) and agar conversion to 5-hydroxymethylfurfural (HMF). During the processes, the hydrophilic surface provides a strong affinity for reaction substrates while the improved porosity allows the efficient diffusion of reactants and products. Furthermore, the activity of functionalized CNTs for agar conversion remained almost unchanged during nine cycles of reaction. This work highlights a strategy for improving the activity of CNTs for electrochemical ORR and agar conversion reactions, as well a promising application of carboxyl-rich CNTs as a solid acid catalyst to produce high-purity HMF—an important chemical intermediate.


carbon nanotubes functionalization carboxyl group oxygen reduction reaction biomass conversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_660_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.07 MB.


  1. [1]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefGoogle Scholar
  2. [2]
    Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32, 335–349.CrossRefGoogle Scholar
  3. [3]
    Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes—the route toward applications. Science 2002, 297, 787–792.CrossRefGoogle Scholar
  4. [4]
    Zhang, J.; Liu, X.; Blume, R.; Zhang, A. H.; Schlögl, R.; Su, D. S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-Butane. Science 2008, 322, 73–77.CrossRefGoogle Scholar
  5. [5]
    Aguilar, C.; García, R.; Soto-Garrido, G.; Arriagada, R. Catalytic wet air oxidation of aqueous ammonia with activated carbon. Appl. Catal. B 2003, 46, 229–237.CrossRefGoogle Scholar
  6. [6]
    Yang, S. X.; Li, X.; Zhu, W. P.; Wang, J. B.; Descorme, C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 2008, 46, 445–452.CrossRefGoogle Scholar
  7. [7]
    Yeager, E. Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J. Mol. Catal. 1986, 38, 5–25.CrossRefGoogle Scholar
  8. [8]
    Hossain, M. S.; Tryk, D.; Yeager, E. The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochim. Acta 1989, 34, 1733–1737.CrossRefGoogle Scholar
  9. [9]
    Sarapuu, A.; Vaik, K.; Schiffrin, D. J.; Tammeveski, K. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J. Electroanal. Chem. 2003, 541, 23–29.CrossRefGoogle Scholar
  10. [10]
    Vaik, K.; Sarapuu, A.; Tammeveski, K.; Mirkhalaf, F.; Schiffrin, D. J. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. J. Electroanal. Chem. 2004, 564, 159–166.CrossRefGoogle Scholar
  11. [11]
    Wang, L.; Zhang, J.; Zhu, L. F.; Meng, X. J.; Xiao, F. S. Efficient conversion of fructose to 5-hydroxymethylfurfural over sulfated porous carbon catalyst. J. Energy Chem. 2013, 22, 241–244.CrossRefGoogle Scholar
  12. [12]
    Liu, R. L.; Chen, J. Z.; Huang, X.; Chen, L. M.; Ma, L. L.; Li, X. J. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem. 2013, 15, 2895–2903.CrossRefGoogle Scholar
  13. [13]
    Qi, X. H.; Guo, H. X.; Li, L. Y.; Smith, R. L. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem 2012, 5, 2215–2220.CrossRefGoogle Scholar
  14. [14]
    Goertzen, S. L.; Thériault, K. D.; Oickle, A. M.; Tarasuk, A. C.; Andreas, H. A. Standardization of the Boehm titration. part I. CO2 expulsion and endpoint determination. Carbon 2010, 48, 1252–1261.CrossRefGoogle Scholar
  15. [15]
    Oickle, A. M.; Goertzen, S. L.; Hopper, K. R.; Abdalla, Y. O.; Andreas, H. A. Standardization of the Boehm titration: Part II. method of agitation, effect of filtering and dilute titrant. Carbon 2010, 48, 3313–3322.CrossRefGoogle Scholar
  16. [16]
    Najafi, E.; Kim, J. Y.; Han, S. H.; Shin, K. UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion. Colloids Surf. A 2006, 284, 373–378.CrossRefGoogle Scholar
  17. [17]
    Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.CrossRefGoogle Scholar
  18. [18]
    Álvarez, P. M.; García-Araya, J. F.; Beltrán, F. J.; Masa, F. J.; Medina, F. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. J. Colloid Interface Sci. 2005, 283, 503–512.CrossRefGoogle Scholar
  19. [19]
    Razumovskii, S. D.; Gorshenev, V. N.; Kovarskii, A. L.; Kuznetsov, A. M.; Shchegolikhin, A. N. Carbon nanostructure reactivity: Reactions of graphite powders with ozone. Fullerenes, Nanotubes, Carbon Nanostruct. 2007, 15, 53–63.CrossRefGoogle Scholar
  20. [20]
    Chiang, H. L.; Huang, C. P.; Chiang, P. C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere 2002, 47, 257–265.CrossRefGoogle Scholar
  21. [21]
    Li, F. X.; Wang, Y.; Wang, D. Z.; Wei, F. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 2004, 42, 2375–2383.CrossRefGoogle Scholar
  22. [22]
    Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.CrossRefGoogle Scholar
  23. [23]
    Liu, J.; Li, S. G.; Liao, W. B.; Chen, Y. A new europium(III) complex containing a neutral ligand of 2-(pyridin-2-yl)-1H-benzo[d]imidazole: Thermal, electrochemical, luminescent properties. Spectrochim. Acta, Part A 2013, 107, 102–107.CrossRefGoogle Scholar
  24. [24]
    Jeon, I.Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 135, 1386–1393.CrossRefGoogle Scholar
  25. [25]
    Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X.Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRefGoogle Scholar
  26. [26]
    Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.CrossRefGoogle Scholar
  27. [27]
    Neumann, C. M.; Laborda, E.; Tschulik, K.; Ward, K.; Compton, R. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 2013, 6, 511–524.CrossRefGoogle Scholar
  28. [28]
    Si, W. F.; Li, J.; Li, H. Q.; Li, S. S.; Yin, J.; Xu, H.; Guo, X. W.; Zhang, T.; Song, Y. J. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.CrossRefGoogle Scholar
  29. [29]
    Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.CrossRefGoogle Scholar
  30. [30]
    Birry, L.; Zagal, J. H.; Dodelet, J. P. Does CO poison Fe-based catalysts for ORR? Electrochem. Commun. 2010, 12, 628–631.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Ningbo Institute of Materials Technology & EngineeringChinese Academy of SciencesNingboChina
  2. 2.Science and Technology on Surface Physics and Chemistry LaboratoryMianyangChina
  3. 3.Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations