Advertisement

Nano Research

, Volume 8, Issue 5, pp 1595–1603 | Cite as

Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries

  • Seung Ho Choi
  • Yun Chan KangEmail author
Research Article

Abstract

SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coating layer, were formed at a preparation temperature of 900 °C. The initial discharge capacities of the bare SnS and SnS-C composite powders at a current density of 500 mA·g−1 were 695 and 740 mA·h·g−1, respectively. The discharge capacities after 50 cycles and the capacity retentions measured from the second cycle of the bare SnS and SnS-C composite powders were 25 and 433 mA·h·g−1 and 5 and 89%, respectively. The prepared SnS-C composite powders with high reversible capacities and good cycle performance can be used as Na-ion battery anode materials.

Keywords

Tin sulfide anode material carbon composite sodium battery energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_648_MOESM1_ESM.pdf (887 kb)
Supplementary material, approximately 885 KB.

References

  1. [1]
    Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.CrossRefGoogle Scholar
  2. [2]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  3. [3]
    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.CrossRefGoogle Scholar
  4. [4]
    Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.CrossRefGoogle Scholar
  5. [5]
    Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid. St. M. 2012, 16, 168–177.CrossRefGoogle Scholar
  6. [6]
    Oszajca, M. F.; Bodnarchuk, M. I.; Kovalenko, M. V. Up and coming precisely engineered colloidal nanoparticles and nanocrystals for Li-ion and Na-ion batteries: Model systems or practical solutions? Chem. Mater. 2014, 26, 5422–5432.CrossRefGoogle Scholar
  7. [7]
    Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-Ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028.CrossRefGoogle Scholar
  8. [8]
    Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 2014, 20, 11980–11992.CrossRefGoogle Scholar
  9. [9]
    Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876–15887.CrossRefGoogle Scholar
  10. [10]
    Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.CrossRefGoogle Scholar
  11. [11]
    Jian, Z. L.; Zhao, B.; Liu, P.; Li, F. J.; Zheng, M. B.; Chen, M. W.; Shi, Y.; Zhou, H. S. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 2014, 50, 1215–1217.CrossRefGoogle Scholar
  12. [12]
    Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on atransition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847–2848.CrossRefGoogle Scholar
  13. [13]
    Jiang, Y. Z.; Hu, M. J.; Zhang, D.; Yuan, T. Z.; Sun, W. P.; Xu, B.; Yan, M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 2014, 5, 60–66.CrossRefGoogle Scholar
  14. [14]
    Rahman, M. M.; Glushenkov, A. M.; Ramireddy, T.; Chen, Y.; Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 2014, 50, 5057–5060.CrossRefGoogle Scholar
  15. [15]
    Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 2014, 26, 2273–2279.CrossRefGoogle Scholar
  16. [16]
    Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.CrossRefGoogle Scholar
  17. [17]
    Wen, J. W.; Zhang, D. W.; Zang, Y.; Sun, X.; Cheng, B.; Ding, C. X.; Yu, Y.; Chen, C. H. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries. Electrochim. Acta 2014, 132, 193–199.CrossRefGoogle Scholar
  18. [18]
    Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.CrossRefGoogle Scholar
  19. [19]
    Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.CrossRefGoogle Scholar
  20. [20]
    Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.CrossRefGoogle Scholar
  21. [21]
    Zhou, G. M.; Wang, D. W.; Li, L.; Li, N.; Li, F.; Cheng, H. M. Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage. Nanoscale 2013, 5, 1576–1582.CrossRefGoogle Scholar
  22. [22]
    Ko, Y. N.; Park, S. B.; Kang, Y. C. Design and fabrication of new nanostructured SnO2-carbon composite microspheres for fast and stable lithium storage performance. Small 2014, 10, 3240–3245.CrossRefGoogle Scholar
  23. [23]
    Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.CrossRefGoogle Scholar
  24. [24]
    Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in li-ion batteries. Nano Res. 2013, 6, 55–64.CrossRefGoogle Scholar
  25. [25]
    Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319–1326.CrossRefGoogle Scholar
  26. [26]
    Cai, J. J.; Li, Z. Z.; Shen, P. K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4093–4098.CrossRefGoogle Scholar
  27. [27]
    Choi, S. H.; Kang, Y. C. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small 2014, 10, 474–478.CrossRefGoogle Scholar
  28. [28]
    Vaughn II, D. D.; Hentz, O. D.; Chen, S.; Wang, D.; Schaak, R. E. Formation of SnS nanoflowers for lithium ion batteries. Chem. Commun. 2012, 48, 5608–5610.CrossRefGoogle Scholar
  29. [29]
    Luo, B.; Fang, Y.; Wang, B.; Zhou, J. S.; Song, H. H.; Zhi, L. J. Two Dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226–5230.CrossRefGoogle Scholar
  30. [30]
    Seo, J.-W.; Jang, J.-T.; Park, S.-W.; Kim, C.; Park, B.; Cheon, J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269–4273.CrossRefGoogle Scholar
  31. [31]
    Sathish, M.; Mitani, S.; Tomai, T.; Honma, I. Ultrathin SnS2 nanoparticles on graphene nanosheets: Synthesis, characterization, and Li-ion storage applications. J. Phys. Chem. C 2012, 116, 12475–12481.CrossRefGoogle Scholar
  32. [32]
    Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three dimensional graphene. Nano Res. 2015, 8, 184–192.CrossRefGoogle Scholar
  33. [33]
    Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 2013, 1, 7181–7184.CrossRefGoogle Scholar
  34. [34]
    Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery perfor mance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.CrossRefGoogle Scholar
  35. [35]
    Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.CrossRefGoogle Scholar
  36. [36]
    Dutta, P. K.; Sen, U. K.; Mitra, S. Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv. 2014, 4, 43155–43159.CrossRefGoogle Scholar
  37. [37]
    Xie, X. Q.; Su, D.; Chen, S. Q.; Zhang, J. Q.; Dou, S. X.; Wang, G. X. SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 2014, 9, 1611–1617.CrossRefGoogle Scholar
  38. [38]
    Prikhodchenko, P. V.; Yu, D. Y. W.; Batabyal, S. K.; Uvarov, V.; Gun, J.; Sladkevich, S.; Mikhaylov, A. A.; Medvedev, A. G.; Lev, O. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2014, 2, 8431–8437.CrossRefGoogle Scholar
  39. [39]
    Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.CrossRefGoogle Scholar
  40. [40]
    Choi, S. H.; Boo, S. J.; Lee, J.-H.; Kang, Y. C. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis. Sci. Rep. 2014, 4, 5755.CrossRefGoogle Scholar
  41. [41]
    Jang, Y. S.; Kang, Y. C. Facile one-pot synthesis of spherical zinc sulfide-carbon nanocomposite powders with superior electrochemical properties as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 16437–16441.CrossRefGoogle Scholar
  42. [42]
    Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Chen, Y. Z.; Peng, D. L. Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A 2012, 106, 87–91.CrossRefGoogle Scholar
  43. [43]
    Cai, W.; Hu, J.; Zhao, Y. S.; Yang, H. L.; Wang, J.; Xiang, W. D. Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 2012, 23, 850–854.CrossRefGoogle Scholar
  44. [44]
    Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K. Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 2014, 4, 4562.Google Scholar
  45. [45]
    Ruffo, R.; Fathi, R.; Kim, D. J.; Jung, Y. H.; Mari, C. M.; Kim, D. K. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim. Acta 2013, 108, 575–582.CrossRefGoogle Scholar
  46. [46]
    Choi, S. H.; Kang, Y. C. Yolk-shell, hollow, and single-crystalline ZnCo2O4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem 2013, 6, 2111–2116.CrossRefGoogle Scholar
  47. [47]
    Su, Q. M.; Du, G. H.; Zhang, J.; Zhong, Y. J.; Xu, B. S.; Yang, Y. H.; Neupane, S.; Li, W. Z. In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes. ACS Nano 2014, 8, 3620–3627.CrossRefGoogle Scholar
  48. [48]
    Choi, S. H.; Kang, Y. C. Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon 2014, 79, 58–66.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations