Skip to main content

The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective

Abstract

At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated π-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink-enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  2. [2]

    Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S.-T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.

    Article  Google Scholar 

  3. [3]

    Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechol. 2009, 4, 773–780.

    Article  Google Scholar 

  4. [4]

    Gokus, T.; Nair, R. R.; Bonetti, A.; Bohmler, M.; Lombardo, A.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Hartschuh, A. Making graphene luminescent by oxygen plasma treatment. ACS Nano 2009, 3, 3963–3968.

    Article  Google Scholar 

  5. [5]

    Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I.-S.; Chen, C.-W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505–509.

    Article  Google Scholar 

  6. [6]

    Zhu, S. J.; Tang, S. J.; Zhang, J. H.; Yang, B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 2012, 48, 4527–4539.

    Article  Google Scholar 

  7. [7]

    Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686–3699.

    Article  Google Scholar 

  8. [8]

    Zhang, Z. P.; Zhang, J.; Chen, N.; Qu, L. T. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869–8890.

    Article  Google Scholar 

  9. [9]

    Li, L. L.; Wu, G. H.; Yang, G. H.; Peng, J.; Zhao, J. W.; Zhu, J.-J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 2013, 5, 4015–4039.

    Article  Google Scholar 

  10. [10]

    Bacon, M.; Bradley, S. J.; Nann, T. Graphene quantum dots. Part. Part. Syst. Charact. 2014, 31, 415–428.

    Article  Google Scholar 

  11. [11]

    Zhou, X. J.; Guo, S. W.; Zhang, J. Y. Solution-processable graphene quantum dots. ChemPhysChem 2013, 14, 2627–2640.

    Article  Google Scholar 

  12. [12]

    Lin, L. P.; Rong, M. C.; Luo, F.; Chen, D. M.; Wang, Y. R.; Chen, X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 2014, 54, 83–102.

    Article  Google Scholar 

  13. [13]

    Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Qin, X. Y.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24, 2037–2041.

    Article  Google Scholar 

  14. [14]

    Qiao, Z.-A.; Huo, Q. S.; Chi, M. F.; Veith, G. M.; Binder, A. J.; Dai, S. A “ship-in-a-bottle” approach to synthesis of polymer dots@silica or polymer dots@carbon core-shell nanospheres. Adv. Mater. 2012, 24, 6017–6021.

    Article  Google Scholar 

  15. [15]

    Zhu, S. J.; Zhang, J. H; Wang, L.; Song, Y. B.; Zhang, G. Y.; Wang, H. Y.; Yang, B. A general route to make non-conjugated linear polymers luminescent. Chem. Commun. 2012, 48, 10889–10891.

    Article  Google Scholar 

  16. [16]

    Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605.

    Article  Google Scholar 

  17. [17]

    Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23.

    Article  Google Scholar 

  18. [18]

    Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y.-P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.

    Article  Google Scholar 

  19. [19]

    Song, Y. B.; Zhu, S. J.; Yang, B. Bioimaging based on fluorescent carbon dots. RSC Adv. 2014, 4, 27184–27200.

    Article  Google Scholar 

  20. [20]

    Feng, X. L.; Wu, J. S.; Ai, M.; Pisula, W.; Zhi, L. J.; Rabe, J. P.; Müllen, K. Triangle-shaped polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 2007, 46, 3033–3036.

    Article  Google Scholar 

  21. [21]

    Yan, X.; Cui, X.; Li, L.-S. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 2010, 132, 5944–5945.

    Article  Google Scholar 

  22. [22]

    Qiao, Z.-A.; Wang, Y. F.; Gao, Y.; Li, H. W.; Dai, T. Y.; Liu, Y. L.; Huo, Q. S. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 2010, 46, 8812–8814.

    Article  Google Scholar 

  23. [23]

    Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H.; Yang, X. B.; Lee, S.-T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 2010, 49, 4430–4434.

    Article  Google Scholar 

  24. [24]

    Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L. H.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.

    Article  Google Scholar 

  25. [25]

    Xu, X.Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  Google Scholar 

  26. [26]

    Shinde, D. B.; Pillai, V. K. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem.-Eur. J. 2012, 18, 12522–12528.

    Article  Google Scholar 

  27. [27]

    Dong, Y. Q.; Chen, C. Q.; Zheng, X. T.; Gao, L. L.; Cui, Z. M.; Yang, H. B.; Guo, C. X.; Chi, Y. W.; Li, C. M. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 2012, 22, 8764–8766.

    Article  Google Scholar 

  28. [28]

    Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475.

    Article  Google Scholar 

  29. [29]

    Tao, H. Q.; Yang, K.; Ma, Z.; Wan, J. M.; Zhang, Y. J.; Kang, Z. H.; Liu, Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012, 8, 281–290.

    Article  Google Scholar 

  30. [30]

    Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858–6860.

    Article  Google Scholar 

  31. [31]

    Zhu, S. J.; Zhang, J. H.; Liu, X.; Li, B.; Wang, X. F.; Tang, S. J.; Meng, Q. N.; Li, Y. F.; Shi, C.; Hu, R. et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2012, 2, 2717–2720.

    Article  Google Scholar 

  32. [32]

    Lu, J.; Yang, J.-X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.

    Article  Google Scholar 

  33. [33]

    Zheng, L. Y.; Chi, Y. W.; Dong, Y. Q.; Lin, J. P.; Wang, B. B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 2009, 131, 4564–4565.

    Article  Google Scholar 

  34. [34]

    Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734–738.

    Article  Google Scholar 

  35. [35]

    Lin, L. X.; Zhang, S. W. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 2012, 48, 10177–10179.

    Article  Google Scholar 

  36. [36]

    Bottini, M.; Balasubramanian, C.; Dawson, M. I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys.Chem. B 2006, 110, 831–836.

    Article  Google Scholar 

  37. [37]

    Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

    Article  Google Scholar 

  38. [38]

    Lee, J.; Kim, K.; Park, W. I.; Kim, B.-H.; Park, J. H.; Kim, T.-H.; Bong, S.; Kim, C.-H.; Chae, G.; Jun, M. et al. Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett. 2012, 12, 6078–6083.

    Article  Google Scholar 

  39. [39]

    Fan, L. L.; Zhu, M.; Lee, X.; Zhang, R. J.; Wang, K. L.; Wei, J. Q.; Zhong, M. L.; Wu, D. H.; Zhu, H. W. Direct synthesis of graphene quantum dots by chemical vapor deposition. Part. Part. Syst. Charact. 2013, 30, 764–769.

    Article  Google Scholar 

  40. [40]

    Zhao, Q.-L.; Zhang, Z.-L.; Huang, B.-H.; Peng, J.; Zhang, M.; Pang, D.-W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5116–5118.

    Google Scholar 

  41. [41]

    Bao, L.; Zhang, Z.-L.; Tian, Z.-Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D.-W. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater. 2011, 23, 5801–5806.

    Article  Google Scholar 

  42. [42]

    Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780.

    Article  Google Scholar 

  43. [43]

    Deng, J. H.; Lu, Q. J.; Mi, N. X.; Li, H. T.; Liu, M. L.; Xu, M. C.; Tan, L.; Xie, Q. J.; Zhang, Y. Y.; Yao, S. Z. Electrochemical synthesis of carbon nanodots directly from alcohols. Chem.-Eur. J. 2014, 20, 4993–4999.

    Article  Google Scholar 

  44. [44]

    Zhou, X. J.; Zhang, Y.; Wang, C.; Wu, X. C.; Yang, Y. Q.; Zheng, B.; Wu, H. X.; Guo, S. W.; Zhang, J. Y. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 2012, 6, 6592–6599.

    Article  Google Scholar 

  45. [45]

    Yang, Z.-C.; Wang, M.; Yong, A. M.; Wong, S. Y.; Zhang, X.-H.; Tan, H.; Chang, A. Y.; Li, X.; Wang, J. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 2011, 47, 11615–11617.

    Article  Google Scholar 

  46. [46]

    Zhu, H.; Wang, X. L.; Li, Y. L.; Wang, Z. J.; Yang, F.; Yang, X. R. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 5118–5120.

    Google Scholar 

  47. [47]

    Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface functionalized carbogenic quantum dots. Small 2008, 4, 455–458.

    Article  Google Scholar 

  48. [48]

    Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563–5565.

    Article  Google Scholar 

  49. [49]

    Zong, J.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Li, C. Z. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem. Commun. 2011, 47, 764–766.

    Article  Google Scholar 

  50. [50]

    Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110.

    Article  Google Scholar 

  51. [51]

    Wang, J.; Wang, C.-F.; Chen, S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem. Int. Ed. 2012, 51, 9297–9301.

    Article  Google Scholar 

  52. [52]

    Zhang, C.; Liu, Y.; Xiong, X.-Q.; Peng, L.-H.; Gan, L.; Chen, C.-F.; Xu, H.-B. Three-dimensional nanographene based on triptycene: Synthesis and its application in fluorescence imaging. Org. Lett. 2012, 14, 5912–5915.

    Article  Google Scholar 

  53. [53]

    Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. J. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  Google Scholar 

  54. [54]

    Shen, J. H.; Zhu, Y. H.; Chen, C.; Yang, X. L.; Li, C. Z. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 2011, 47, 2580–2582.

    Article  Google Scholar 

  55. [55]

    Zhu, S. J.; Wang, L.; Zhou, N.; Zhao, X. H.; Song, Y. B.; Maharjan, S.; Zhang, J. H.; Lu, L. J.; Wang, H. Y.; Yang, B. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: From the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun. 2014, 50, 13845–13848.

    Article  Google Scholar 

  56. [56]

    Zheng, H. Z.; Wang, Q. L.; Long, Y. J.; Zhang, H. J.; Huang, X. X.; Zhu, R. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 2011, 47, 10650–10652.

    Article  Google Scholar 

  57. [57]

    Nie, H.; Li, M. J.; Li, Q. S.; Liang, S. J.; Tan, Y. Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26, 3104–3112.

    Article  Google Scholar 

  58. [58]

    Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

    Article  Google Scholar 

  59. [59]

    Wang, Y.; Kalytchuk, S.; Zhang, Y.; Shi, H. C.; Kershaw, S. V.; Rogach, A. L. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J. Phys. Chem. Lett. 2014, 5, 1412–1420.

    Article  Google Scholar 

  60. [60]

    Wang, Y. Y.; Li, Y.; Yan, Y.; Xu, J.; Guan, B. Y.; Wang, Q.; Li, J. Y.; Yu, J. H. Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chem. Commun. 2013, 49, 9006–9008.

    Article  Google Scholar 

  61. [61]

    Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551.

    Article  Google Scholar 

  62. [62]

    Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G. Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res. 2011, 4, 908–920.

    Article  Google Scholar 

  63. [63]

    Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

    Article  Google Scholar 

  64. [64]

    Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294.

    Google Scholar 

  65. [65]

    Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H.; Wang, H. C.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  66. [66]

    Gan, Z. X.; Wu, X. L.; Zhou, G. X.; Shen, J. C.; Chu, P. K. Is there real upconversion photoluminescence from graphene quantum dots? Adv. Opt. Mater. 2013, 1, 554–558.

    Article  Google Scholar 

  67. [67]

    Wen, X. M.; Yu, P.; Toh, Y. R.; Ma, X. Q.; Tang, J. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 2014, 50, 4703–4706.

    Article  Google Scholar 

  68. [68]

    Qu, S. N.; Liu, X. Y.; Guo, X. Y.; Chu, M. H.; Zhang, L. G.; Shen, D. Z. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Adv. Funct. Mater. 2014, 24, 2689–2695.

    Article  Google Scholar 

  69. [69]

    Fan, L. S.; Hu, Y. W.; Wang, X.; Zhang, L. L.; Li, F. H.; Han, D. X.; Li, Z. G.; Zhang, Q. X.; Wang, Z. X.; Niu, L. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 2012, 101, 192–197.

    Article  Google Scholar 

  70. [70]

    Luo, P. J. G.; Sahu, S.; Yang, S.-T.; Sonkar, S. K.; Wang, J. P.; Wang, H. F.; LeCroy, G. E.; Cao, L.; Sun, Y.-P. Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B 2013, 1, 2116–2127.

    Article  Google Scholar 

  71. [71]

    Esteves da Silva, J. C. G.; Gonçalves, H. M. R. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 2011, 30, 1327–1336.

    Article  Google Scholar 

  72. [72]

    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  Google Scholar 

  73. [73]

    Goh, E. J.; Kim, K. S.; Kim, Y. R.; Jung, H. S.; Beack, S.; Kong, W. H.; Scarcelli, G.; Yun, S. H.; Hahn, S. K. Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules 2012, 13, 2554–2561.

    Article  Google Scholar 

  74. [74]

    Kong, B.; Zhu, A. W.; Ding, C. Q.; Zhao, X. M.; Li, B.; Tian, Y. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 2012, 24, 5844–5848.

    Article  Google Scholar 

  75. [75]

    Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.

    Article  Google Scholar 

  76. [76]

    Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858–6867.

    Article  Google Scholar 

  77. [77]

    Qian, J.; Wang, D.; Cai, F.-H.; Xi, W.; Peng, L.; Zhu, Z.-F.; He, H.; Hu, M.-L.; He, S. L. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angew. Chem. Int. Ed. 2012, 51, 10570–10575.

    Article  Google Scholar 

  78. [78]

    Chien, C.-T.; Li, S.-S.; Lai, W.-J.; Yeh, Y.-C.; Chen, H.-A.; Chen, I.-S.; Chen, L.-C.; Chen, K.-H.; Nemoto, T.; Isoda, S. et al. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed. 2012, 51, 6662–6666.

    Article  Google Scholar 

  79. [79]

    Luo, Z. T.; Vora, P. M.; Mele, E. J.; Johnson, A. T. C.; Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 2009, 94, 111909.

    Article  Google Scholar 

  80. [80]

    Galande, C.; Mohite, A. D.; Naumov, A. V.; Gao, W.; Ci, L. J.; Ajayan, A.; Gao, H.; Srivastava, A.; Weisman, R. B.; Ajayan, P. M. Quasi-molecular fluorescence from graphene oxide. Sci. Rep. 2011, 1, 85.

    Article  Google Scholar 

  81. [81]

    Shang, J. Z.; Ma, L.; Li, J. W.; Ai, W.; Yu, T.; Gurzadyan, G. G. The origin of fluorescence from graphene oxide. Sci. Rep. 2012, 2, 792.

    Article  Google Scholar 

  82. [82]

    Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8, 235–242.

    Article  Google Scholar 

  83. [83]

    Radovic, L. R.; Bockrath, B. On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc. 2005, 127, 5917–5927.

    Article  Google Scholar 

  84. [84]

    Xu, Q. F.; Zhou, Q.; Hua, Z.; Xue, Q.; Zhang, C. F.; Wang, X. Y.; Pan, D. Y.; Xiao, M. Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano 2013, 7, 10654–10661.

    Article  Google Scholar 

  85. [85]

    Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 2013, 7, 1239–1245.

    Article  Google Scholar 

  86. [86]

    Kumar, G. S.; Roy, R.; Sen, D.; Ghorai, U. K.; Thapa, R.; Mazumder, N.; Saha, S.; Chattopadhyay, K. K. Amino-functionalized graphene quantum dots: Origin of tunable heterogeneous photoluminescence. Nanoscale 2014, 6, 3384–3391.

    Article  Google Scholar 

  87. [87]

    Qian, Z. S.; Ma, J. J.; Shan, X. Y.; Shao, L. X.; Zhou, J.; Chen, J. R.; Feng, H. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Adv. 2013, 3, 14571–14579.

    Article  Google Scholar 

  88. [88]

    Wang, L.; Wang, H.-Y.; Wang, Y.; Zhu, S.-J.; Zhang, Y.-L.; Zhang, J.-H.; Chen, Q.-D.; Han, W.; Xu, H.-L.; Yang, B. et al. Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy. Adv. Mater. 2013, 25, 6539–6545.

    Article  Google Scholar 

  89. [89]

    Wang, L.; Zhu, S.-J.; Wang, H.-Y.; Wang, Y.-F.; Hao, Y.-W.; Zhang, J.-H.; Chen, Q.-D.; Zhang, Y.-L.; Han, W.; Yang, B. et al. Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy. Adv. Opt. Mater. 2013, 1, 264–271.

    Article  Google Scholar 

  90. [90]

    Zhu, S. J.; Zhang, J. H.; Tang, S. J.; Qiao, C. Y.; Wang, L.; Wang, H. Y.; Liu, X.; Li, B.; Li, Y. F.; Yu, W. L. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 2012, 22, 4732–4740.

    Article  Google Scholar 

  91. [91]

    Mei, Q. S.; Zhang, Z. P. Photoluminescent graphene oxide ink to print sensors onto microporous membranes for versatile visualization bioassays. Angew. Chem. Int. Ed. 2012, 51, 5602–5606.

    Article  Google Scholar 

  92. [92]

    Liu, F.; Jang, M.-H.; Ha, H. D.; Kim, J. H.; Cho, Y.-H.; Seo, T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater. 2013, 25, 3657–3662.

    Article  Google Scholar 

  93. [93]

    Li, X. M.; Lau, S. P.; Tang, L. B.; Ji, R. B.; Yang, P. Z. Multicolour light emission from chlorine-doped graphene quantum dots. J. Mater. Chem. C 2013, 1, 7308–7313.

    Article  Google Scholar 

  94. [94]

    Luo, P. H.; Ji, Z.; Li, C.; Shi, G. Q. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale 2013, 5, 7361–7367.

    Article  Google Scholar 

  95. [95]

    Sun, H. J.; Gao, N.; Wu, L.; Ren, J. S.; Wei, W. L.; Qu, X. G. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem.-Eur. J. 2013, 19, 13362–13368.

    Article  Google Scholar 

  96. [96]

    Feng, Y. Q.; Zhao, J. P.; Yan, X. B.; Tang, F. L.; Xue, Q. J. Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon 2014, 66, 334–339.

    Article  Google Scholar 

  97. [97]

    Sun, Y. Q.; Wang, S. Q.; Li, C.; Luo, P. H.; Tao, L.; Wei, Y.; Shi, G. Q. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys. 2013, 15, 9907–9913.

    Article  Google Scholar 

  98. [98]

    Jiang, F.; Chen, D. Q.; Li, R. M.; Wang, Y. C.; Zhang, G. Q.; Li, S. M.; Zheng, J. P.; Huang, N. Y.; Gu, Y.; Wang, C. R. et al. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale 2013, 5, 1137–1142.

    Article  Google Scholar 

  99. [99]

    Lingam, K.; Podila, R.; Qian, H. J.; Serkiz, S.; Rao, A. M. Evidence for edge-state photoluminescence in graphene quantum dots. Adv. Funct. Mater. 2013, 23, 5062–5065.

    Article  Google Scholar 

  100. [100]

    Chen, C.-F.; Park, C.-H.; Boudouris, B. W.; Horng, J.; Geng, B. S.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 2011, 471, 617–620.

    Article  Google Scholar 

  101. [101]

    Li, L.-S.; Yan, X. Colloidal graphene quantum dots. J. Phys. Chem. Lett. 2010, 1, 2572–2576.

    Article  Google Scholar 

  102. [102]

    Tomović, Z.; Watson, M. D.; Müllen, K. Superphenalene-based columnar liquid crystals. Angew. Chem. Int. Ed. 2004, 43, 755–758.

    Article  Google Scholar 

  103. [103]

    Mueller, M. L.; Yan, X.; Dragnea, B.; Li, L.-S. Slow hot-carrier relaxation in colloidal graphene quantum dots. Nano Lett. 2011, 11, 56–60.

    Article  Google Scholar 

  104. [104]

    Zhu, S. J.; Wang, L.; Li, B.; Song, Y. B.; Zhao, X. H.; Zhang, G. Y.; Zhang, S. T.; Lu, S. Y.; Zhang, J. H.; Wang, H. Y. et al. Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon 2014, 77, 462–472.

    Article  Google Scholar 

  105. [105]

    Kim, S.; Hwang, S. W.; Kim, M.-K.; Shin, D. Y.; Shin, D. H.; Kim, C. O.; Yang, S. B.; Park, J. H.; Hwang, E.; Choi, S.-H. et al. Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano 2012, 6, 8203–8208.

    Article  Google Scholar 

  106. [106]

    Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954–6960.

    Article  Google Scholar 

  107. [107]

    Lui, C. H.; Mak, K. F.; Shan, J.; Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 2010, 105, 127404.

    Article  Google Scholar 

  108. [108]

    Kim, R.; Perebeinos, V.; Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B 2011, 84, 075449.

    Article  Google Scholar 

  109. [109]

    Fuyuno, N.; Kozawa, D.; Miyauchi, Y.; Mouri, S.; Kitaura, R.; Shinohara, H.; Yasuda, T.; Komatsu, N.; Matsuda, K. Drastic change in photoluminescence properties of graphene quantum dots by chromatographic separation. Adv. Opt. Mater. 2014, 2, 983–989.

    Article  Google Scholar 

  110. [110]

    Tang, L. B.; Ji, R. B.; Li, X. M.; Teng, K. S.; Lau, S. P. Size-dependent structural and optical characteristics of glucose-derived graphene quantum dots. Part. Part. Syst. Charact. 2013, 30, 523–531.

    Article  Google Scholar 

  111. [111]

    Kwon, W.; Rhee, S.-W. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun. 2012, 48, 5256–5258.

    Article  Google Scholar 

  112. [112]

    Kwon, W.; Lee, G.; Do, S.; Joo, T.; Rhee, S.-W. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 2014, 10, 506–513.

    Article  Google Scholar 

  113. [113]

    Wang, X.; Cao, L.; Yang, S.-T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y.-P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 5310–5314.

    Article  Google Scholar 

  114. [114]

    Das, S. K.; Liu, Y. Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett. 2014, 14, 620–625.

    Article  Google Scholar 

  115. [115]

    Yu, P.; Wen, X. M.; Toh, Y.-R.; Tang, J. Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C 2012, 116, 25552–25557.

    Article  Google Scholar 

  116. [116]

    Wen, X. M.; Yu, P.; Toh, Y.-R.; Hao, X. T.; Tang, J. Intrinsic and extrinsic fluorescence in carbon nanodots: Ultrafast time-resolved fluorescence and carrier dynamics. Adv. Opt. Mater. 2013, 1, 173–178.

    Article  Google Scholar 

  117. [117]

    Wang, L.; Zhu, S.-J.; Wang, H.-Y.; Qu, S.-N.; Zhang, Y.-L.; Zhang, J.-H.; Chen, Q.-D.; Xu, H.-L.; Han, W.; Yang, B. et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 2014, 8, 2541–2547.

    Article  Google Scholar 

  118. [118]

    Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. 2012, 51, 12215–12218.

    Article  Google Scholar 

  119. [119]

    Sun, H. J.; Wu, L.; Gao, N.; Ren, J. S.; Qu, X. G. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl. Mater. Inter. 2013, 5, 1174–1179.

    Article  Google Scholar 

  120. [120]

    Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 2012, 22, 2971–2979.

    Article  Google Scholar 

  121. [121]

    Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 2012, 134, 747–750.

    Article  Google Scholar 

  122. [122]

    Song, Y. B.; Zhu, S. J.; Xiang, S. Y.; Zhao, X. H.; Zhang, J. H.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 2014, 6, 4676–4682.

    Article  Google Scholar 

  123. [123]

    Ding, D.; Goh, C. C.; Feng, G. X.; Zhao, Z. J.; Liu, J.; Liu, R. R.; Tomczak, N.; Geng, J. L.; Tang, B. Z.; Ng, L. G.; et al. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv. Mater. 2013, 25, 6083–6088.

    Article  Google Scholar 

  124. [124]

    Lai, T. T.; Zheng, E. H.; Chen, L. X.; Wang, X. Y.; Kong, L. C.; You, C. P.; Ruan, Y. M.; Weng, X. X. Hybrid carbon source for producing nitrogen-doped polymer nanodots: One-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III). Nanoscale 2013, 5, 8015–8021.

    Article  Google Scholar 

  125. [125]

    Sun, Y.; Cao, W. P.; Li, S. L.; Jin, S. B.; Hu, K. L.; Hu, L. M.; Huang, Y. Y.; Gao, X. Y.; Wu, Y.; Liang, X.-J. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Sci. Rep. 2013, 3, 3036.

    Google Scholar 

  126. [126]

    Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 2013, 52, 3086–3109.

    Article  Google Scholar 

  127. [127]

    Zhu, S. J.; Zhang, J. H.; Song, Y. B.; Zhang, G. Y.; Zhang, H.; Yang, B. Fluorescent nanocomposite based on PVA polymer dots. Acta Chim. Sinica 2012, 70, 2311–2315.

    Article  Google Scholar 

  128. [128]

    Sun, M.; Hong, C.-Y.; Pan, C. Y. A unique aliphatic tertiary amine chromophore: Fluorescence, polymer structure, and application in cell imaging. J. Am. Chem. Soc. 2012, 134, 20581–20584.

    Article  Google Scholar 

  129. [129]

    Zhu, Q.; Qiu, F.; Zhu, B. S.; Zhu, X. Y. Hyperbranched polymers for bioimaging. RSC Adv. 2013, 3, 2071–2083.

    Article  Google Scholar 

  130. [130]

    Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.

    Google Scholar 

  131. [131]

    Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

    Article  Google Scholar 

  132. [132]

    Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 2012, 22, 1265–1269.

    Article  Google Scholar 

  133. [133]

    Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj, R.; Chand, S. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 2011, 133, 9960–9963.

    Article  Google Scholar 

  134. [134]

    Zhang, X. Y.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y. H.; Wang, P.; Zhang, T. Q.; Zhao, Y.; Zhang, H. Z. et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 2013, 7, 11234–11241.

    Article  Google Scholar 

  135. [135]

    Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Zong, J.; Zhang, J. M.; Li, C. Z. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 2012, 36, 97–101.

    Article  Google Scholar 

  136. [136]

    Liu, W.-W.; Feng, Y.-Q.; Yan, X.-B.; Chen, J.-T.; Xue, Q.-J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111–4122.

    Article  Google Scholar 

  137. [137]

    Lin, Z.; Xue, W.; Chen, H.; Lin, J.-M. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal.Chem. 2011, 83, 8245–8251.

    Article  Google Scholar 

  138. [138]

    Liu, J.-J.; Zhang, X.-L.; Cong, Z.-X.; Chen, Z.-T.; Yang, H.-H.; Chen, G.-N. Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale 2013, 5, 1810–1815.

    Article  Google Scholar 

  139. [139]

    Li, X.; Zhu, S. J.; Xu, B.; Ma, K.; Zhang, J. H.; Yang, B.; Tian, W. J. Self-assembled graphene quantum dots induced by cytochrome c: A novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 2013, 5, 7776–7779.

    Article  Google Scholar 

  140. [140]

    Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater. 2013, 25, 6569–6574.

    Article  Google Scholar 

  141. [141]

    Markovic, Z. M.; Ristic, B. Z.; Arsikin, K. M.; Klisic, D. G.; Harhaji-Trajkovic, L. M.; Todorovic-Markovic, B. M.; Kepic, D. P.; Kravic-Stevovic, T. K.; Jovanovic, S. P.; Milenkovic, M. M. et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 2012, 33, 7084–7092.

    Article  Google Scholar 

  142. [142]

    Xie, Z.; Wang, F.; Liu, C.-Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716–1721.

    Article  Google Scholar 

  143. [143]

    Zhang, G. Y.; Zhang, H.; Zhang, X. R.; Zhu, S. J.; Zhang, L.; Meng, Q. N.; Wang, M. Y.; Li, Y. F.; Yang, B. Embedding graphene nanoparticles into poly(N,N′-dimethylacrylamine) to prepare transparent nanocomposite films with high refractive index. J. Mater. Chem. 2012, 22, 21218–21224.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bai Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Song, Y., Zhao, X. et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015). https://doi.org/10.1007/s12274-014-0644-3

Download citation

Keywords

  • carbon dots
  • graphene quantum dots
  • carbon nanodots
  • polymer dots
  • photoluminescence mechanism