Synthesis, properties and applications of one- and two-dimensional gold nanostructures

Abstract

The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and dimensionality. Especially, anisotropic gold nanocrystals, such as nanowires, nanobelts, nanoplates and nanosheets, have attracted much attention due to their striking properties and promising applications in electronics, catalysis, photonics, sensing and biomedicine. In this review, we will summarize the recent developments of onedimensional (1D) and two-dimensional (2D) gold nanostructures. Various kinds of synthetic methods for preparation of these 1D and 2D gold nanocrystals will be described. Moreover, we will also briefly introduce the properties and potential applications of these 1D and 2D gold nanocrystals.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Faraday, M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. London, Ser. A 1857, 147, 145–181.

    Article  Google Scholar 

  2. [2]

    Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

    Article  Google Scholar 

  3. [3]

    Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 2014, 53, 1756–1789.

    Article  Google Scholar 

  4. [4]

    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  5. [5]

    Brioude, A.; Jiang, X. C.; Pileni, M. P. Optical properties of gold nanorods: DDA simulations supported by experiments. J. Phys. Chem. B 2005, 109, 13138–13142.

    Article  Google Scholar 

  6. [6]

    Hao, E.; Schatz, G. C.; Hupp, J. T. Synthesis and optical properties of anisotropic metal nanoparticles. J. Fluoresc. 2004, 14, 331–341.

    Article  Google Scholar 

  7. [7]

    Hong, X.; Wang, D. S.; Li, Y. D. Kinked gold nanowires and their SPR/SERS properties. Chem. Commun. 2011, 47, 9909–9911.

    Article  Google Scholar 

  8. [8]

    Feng, H. J.; Yang, Y. M.; You, Y. M.; Li, G. P.; Guo, J.; Yu, T.; Shen, Z. X.; Wu, T.; Xing, B. G. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun. 2009, 1984–1986.

    Google Scholar 

  9. [9]

    Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  Google Scholar 

  10. [10]

    Andoy, N. M.; Zhou, X. C.; Choudhary, E.; Shen, H.; Liu, G. K.; Chen, P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 2013, 135, 1845–1852.

    Article  Google Scholar 

  11. [11]

    Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

    Article  Google Scholar 

  12. [12]

    Kondo, Y.; Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 2000, 289, 606–608.

    Article  Google Scholar 

  13. [13]

    Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.

    Article  Google Scholar 

  14. [14]

    Sau, T. K.; Rogach, A. L.; Jäckel, F.; Klar, T. A.; Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010, 22, 1805–1825.

    Article  Google Scholar 

  15. [15]

    Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

    Article  Google Scholar 

  16. [16]

    Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 2006, 45, 7544–7554.

    Article  Google Scholar 

  17. [17]

    Forrer, P.; Schlottig, F.; Siegenthaler, H.; Textor, M. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. J. Appl. Electrochem. 2000, 30, 533–541.

    Article  Google Scholar 

  18. [18]

    Halder, A.; Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854–1858.

    Article  Google Scholar 

  19. [19]

    Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900–8901.

    Article  Google Scholar 

  20. [20]

    Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

    Article  Google Scholar 

  21. [21]

    Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044.

    Article  Google Scholar 

  22. [22]

    Pazos-Pérez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzán, L. M.; Giersig, M. Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 2008, 24, 9855–9860.

    Article  Google Scholar 

  23. [23]

    Huang, X.; Li, S. Z.; Wu, S. X.; Huang, Y. Z.; Boey, F.; Gan, C. L.; Zhang, H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv. Mater. 2012, 24, 979–983.

    Article  Google Scholar 

  24. [24]

    Bernardi, M.; Raja, S. N.; Lim, S. K. Nanotwinned gold nanowires obtained by chemical synthesis. Nanotechnology 2010, 21, 285607.

    Article  Google Scholar 

  25. [25]

    Krichevski, O.; Tirosh, E.; Markovich, G. Formation of gold-silver nanowires in thin surfactant solution films. Langmuir 2006, 22, 867–870.

    Article  Google Scholar 

  26. [26]

    Shen, X. S.; Chen, L. Y.; Li, D. H.; Zhu, L. F.; Wang, H.; Liu, C. C.; Wang, Y.; Xiong, Q. H.; Chen, H. Y. Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 2011, 5, 8426–8433.

    Article  Google Scholar 

  27. [27]

    Imura, Y.; Tanuma, H.; Sugimoto, H.; Ito, R.; Hojo, S.; Endo, H.; Morita, C.; Kawai, T. Water-dispersible ultrathin Au nanowires prepared using a lamellar template of a long-chain amidoamine derivative. Chem. Commun. 2011, 47, 6380–6382.

    Article  Google Scholar 

  28. [28]

    Zhu, C.; Peng, H. C.; Zeng, J.; Liu, J. Y.; Gu, Z. Z.; Xia, Y. N. Facile Synthesis of gold wavy nanowires and investigation of their growth mechanism. J. Am. Chem. Soc. 2012, 134, 20234–20237.

    Article  Google Scholar 

  29. [29]

    He, J. T.; Wang, Y. W.; Feng, Y. H.; Qi, X. Y.; Zeng, Z. Y.; Liu, Q.; Teo, W. S.; Gan, C. L.; Zhang, H.; Chen, H. Y. Forest of gold nanowires: A new type of nanocrystal growth. ACS Nano 2013, 7, 2733–2740.

    Article  Google Scholar 

  30. [30]

    Liu, H.; Cao, X. M.; Yang, J. M.; Gong, X. Q.; Shi, X. Y. Dendrimer-mediated hydrothermal synthesis of ultrathin gold nanowires. Sci. Rep. 2013, 3, 3181.

    Google Scholar 

  31. [31]

    Wang, C.; Wei, Y. J.; Jiang, H. Y.; Sun, S. H. Bending nanowire growth in solution by mechanical disturbance. Nano Lett. 2010, 10, 2121–2125.

    Article  Google Scholar 

  32. [32]

    Shen, X. S.; Wang, G. Z.; Hong, X.; Xie, X.; Zhu, W.; Li, D. P. Anisotropic growth of one-dimensional silver rod-needle and plate-belt heteronanostructures induced by twins and hcp phase. J. Am. Chem. Soc. 2009, 131, 10812–10813.

    Article  Google Scholar 

  33. [33]

    Liang, H. Y.; Yang, H. X.; Wang, W. Z.; Li, J. Q.; Xu, H. X. High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals. J. Am. Chem. Soc. 2009, 131, 6068–6069.

    Article  Google Scholar 

  34. [34]

    Wang, P. P.; Yu, Q. Y.; Long, Y.; Hu, S.; Zhuang, J.; Wang, X. Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res. 2012, 5, 283–291.

    Article  Google Scholar 

  35. [35]

    Swami, A.; Kumar, A.; Selvakannan, P. R.; Mandal, S.; Pasricha, R.; Sastry, M. Highly oriented gold nanoribbons by the reduction of aqueous chloroaurate ions by hexadecylaniline Langmuir monolayers. Chem. Mater. 2003, 15, 17–19.

    Article  Google Scholar 

  36. [36]

    Zhang, J. L.; Du, J. M.; Han, B. X.; Liu, Z. M.; Jiang, T.; Zhang, Z. F. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 2006, 45, 1116–1119.

    Article  Google Scholar 

  37. [37]

    Bakshi, M. S.; Possmayer, F.; Petersen, N. O. Aqueous-phase room-temperature synthesis of gold nanoribbons: Soft template effect of a gemini surfactant. J. Phys. Chem. C 2008, 112, 8259–8265.

    Article  Google Scholar 

  38. [38]

    Zhao, N.; Wei, Y.; Sun, N. J.; Chen, Q. J.; Bai, J. W.; Zhou, L. P.; Qin, Y.; Li, M. X.; Qi, L. M. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 2008, 24, 991–998.

    Article  Google Scholar 

  39. [39]

    Li, L. S.; Wang, Z. J.; Huang, T.; Xie, J. L.; Qi, L. M. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir 2010, 26, 12330–12335.

    Article  Google Scholar 

  40. [40]

    Zhang, J. H.; Liu, H. Y.; Wang, Z. L.; Ming, N. B. Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Appl. Phys. Lett. 2007, 91, 133112.

    Article  Google Scholar 

  41. [41]

    Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Synthetic routes and plasmonic properties of noble metal nanoplates. Eur. J. Inorg. Chem. 2010, 2010, 4288–4297.

    Article  Google Scholar 

  42. [42]

    Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.

    Article  Google Scholar 

  43. [43]

    Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L. D.; Schatz, G. C.; Mirkin, C. A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312–5313.

    Article  Google Scholar 

  44. [44]

    Sun, X. P.; Dong, S. J.; Wang, E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed. 2004, 43, 6360–6363.

    Article  Google Scholar 

  45. [45]

    Huang, W. L.; Chen, C. H.; Huang, M. H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 2007, 111, 2533–2538.

    Article  Google Scholar 

  46. [46]

    Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 2008, 18, 2005–2016.

    Article  Google Scholar 

  47. [47]

    Lofton, C.; Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197–1208.

    Article  Google Scholar 

  48. [48]

    Lim, B.; Camargo, P. H. C.; Xia, Y. N. Mechanistic study of the synthesis of an nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir 2008, 24, 10437–10442.

    Article  Google Scholar 

  49. [49]

    Hong, S.; Shuford, K. L.; Park, S. Shape transformation of gold nanoplates and their surface plasmon characterization: Triangular to hexagonal nanoplates. Chem. Mater. 2011, 23, 2011–2013.

    Article  Google Scholar 

  50. [50]

    Porel, S.; Singh, S.; Radhakrishnan, T. P. Polygonal gold nanoplates in a polymer matrix. Chem. Commun. 2005, 2387–2389.

    Google Scholar 

  51. [51]

    Qin, H. L.; Wang, D.; Huang, Z. L.; Wu, D. M.; Zeng, Z. C.; Ren, B.; Xu, K.; Jin, J. Thickness-controlled synthesis of ultrathin Au sheets and surface plasmonic property. J. Am. Chem. Soc. 2013, 135, 12544–12547.

    Article  Google Scholar 

  52. [52]

    Huang, X.; Li, H.; Li, S. Z.; Wu, S. X.; Boey, F.; Ma, J.; Zhang, H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angew. Chem. Int. Ed. 2011, 50, 12245–12248.

    Article  Google Scholar 

  53. [53]

    Wu, Z. N.; Dong, C. W.; Li, Y. C.; Hao, H. X.; Zhang, H.; Lu, Z. Y.; Yang, B. Self-assembly of Au15 into single-cluster-thick sheets at the interface of two miscible high-boiling solvents. Angew. Chem. Int. Ed. 2013, 52, 9952–9955.

    Article  Google Scholar 

  54. [54]

    Wang, C.; Sun, S. H. Facile synthesis of ultrathin and single-crystalline Au nanowires. Chem. Asian J. 2009, 4, 1028–1034.

    Article  Google Scholar 

  55. [55]

    Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 2002, 18, 922–927.

    Article  Google Scholar 

  56. [56]

    Moon, G. D.; Lim, G. H.; Song, J. H.; Shin, M.; Yu, T.; Lim, B.; Jeong, U. Highly stretchable patterned gold electrodes made of Au nanosheets. Adv. Mater. 2013, 25, 2707–2712.

    Article  Google Scholar 

  57. [57]

    Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin, B. R.; Mbindyo, J.; Mallouk, T. E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 2000, 77, 1399–1401.

    Article  Google Scholar 

  58. [58]

    Loubat, A.; Escoffier, W.; Lacroix, L. M.; Viau, G.; Tan, R.; Carrey, J.; Warot-Fonrose, B.; Raquet, B. Cotunneling transport in ultra-narrow gold nanowire bundles. Nano Res. 2013, 6, 644–651.

    Article  Google Scholar 

  59. [59]

    Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 2005, 4, 525–529.

    Article  Google Scholar 

  60. [60]

    Lee, S.; Im, J.; Yoo, Y.; Bitzek, E.; Kiener, D.; Richter, G.; Kim, B.; Oh, S. H. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat. Commun. 2014, 5, 3033.

    Google Scholar 

  61. [61]

    Wang, J. W.; Sansoz, F.; Huang, J. Y.; Liu, Y.; Sun, S. H.; Zhang, Z.; Mao, S. X. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 2013, 4, 1742.

    Article  Google Scholar 

  62. [62]

    Xia, Y.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–344.

    Article  Google Scholar 

  63. [63]

    Bridges, C. R.; DiCarmine, P. M.; Seferos, D. S. Gold nanotubes as sensitive, solution-suspendable refractive index reporters. Chem. Mater. 2012, 24, 963–965.

    Article  Google Scholar 

  64. [64]

    Anderson, L. J. E.; Payne, C. M.; Zhen, Y. R.; Nordlander, P.; Hafner, J. H. A tunable plasmon resonance in gold nanobelts. Nano Lett. 2011, 11, 5034–5037.

    Article  Google Scholar 

  65. [65]

    Khlebtsov, B. N.; Khlebtsov, N. G. Multipole plasmons in metal nanorods: Scaling properties and dependence on particle size, shape, orientation, and dielectric environment. J. Phys. Chem. C 2007, 111, 11516–11527.

    Article  Google Scholar 

  66. [66]

    Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229–232.

    Article  Google Scholar 

  67. [67]

    Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

    Article  Google Scholar 

  68. [68]

    Wei, H.; Xu, H. X. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics 2012, 1, 155–169.

    Article  Google Scholar 

  69. [69]

    Grirrane, A.; Corma, A.; García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661–1664.

    Article  Google Scholar 

  70. [70]

    Corma, A.; Concepcion, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; Lopez-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.

    Article  Google Scholar 

  71. [71]

    Chen, M. S.; Goodman, D. W. Catalytically active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 2006, 39, 739–746.

    Article  Google Scholar 

  72. [72]

    Hong, X.; Wang, D. S.; Cai, S. F.; Rong, H. P.; Li, Y. D. Single-crystalline octahedral Au-Ag nanoframes. J. Am. Chem. Soc. 2012, 134, 18165–18168.

    Article  Google Scholar 

  73. [73]

    Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.

    Article  Google Scholar 

  74. [74]

    Zhou, X. C.; Andoy, N. M.; Liu, G. K.; Choudhary, E.; Han, K. S.; Shen, H.; Chen, P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 2012, 7, 237–241.

    Article  Google Scholar 

  75. [75]

    Hong, X.; Wang, D. S.; Yu, R.; Yan, H.; Sun, Y.; He, L.; Niu, Z. Q.; Peng, Q.; Li, Y. D. Ultrathin Au-Ag bimetallic nanowires with Coulomb blockade effects. Chem. Commun. 2011, 47, 5160–5162.

    Article  Google Scholar 

  76. [76]

    Guo, T.; Tan, Y. W. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances. Nanoscale 2013, 5, 561–569.

    Article  Google Scholar 

  77. [77]

    Wang, Y.; Wang, Q. X.; Sun, H.; Zhang, W. Q.; Chen, G.; Wang, Y. W.; Shen, X. S.; Han, Y.; Lu, X. M.; Chen, H. Y. Chiral transformation: From single nanowire to double helix. J. Am. Chem. Soc. 2011, 133, 20060–20063.

    Article  Google Scholar 

  78. [78]

    Velázquez-Salazar, J. J.; Esparza, R.; Mejía-Rosales, S. J.; Estrada-Salas, R.; Ponce, A.; Deepak, F. L.; Castro-Guerrero, C.; José-Yacamán, M. Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. ACS Nano 2011, 5, 6272–6278.

    Article  Google Scholar 

  79. [79]

    Lee, H.; Yoo, Y.; Kang, T.; In, J.; Seo, M. K.; Kim, B. Topotaxial fabrication of vertical AuxAg1−x nanowire arrays: Plasmon-active in the blue region and corrosion resistant. Small 2012, 8, 1527–1533.

    Article  Google Scholar 

  80. [80]

    Hong, X.; Yin, Z. Y.; Fan, Z. X.; Tay, Y. Y.; Chen, J. Z.; Du, Y. P.; Xue, C.; Chen, H. Y.; Zhang, H. Periodic AuAg-Ag2S heterostructured nanowires. Small 2014, 10, 479–482.

    Article  Google Scholar 

  81. [81]

    Lal, S.; Hafner, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble metal nanowires: From plasmon waveguides to passive and active devices. Acc. Chem. Res. 2012, 45, 1887–1895.

    Article  Google Scholar 

  82. [82]

    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  83. [83]

    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K.; Zhang, H. The chemistry of ultra-thin transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  84. [84]

    Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  85. [85]

    Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.

    Article  Google Scholar 

  86. [86]

    Li, H.; Wu, J. M. T.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single- and multi-layer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

    Article  Google Scholar 

  87. [87]

    Tan, C. L.; Qi, X. Y.; Huang, X.; Yang, J.; Zheng, B.; An, Z. F.; Chen, R. F.; Wei, J.; Tang, B. Z.; Huang, W. et al. Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Adv. Mater. 2014, 26, 1735–1739.

    Article  Google Scholar 

  88. [88]

    Qi, X. Y.; Tan, C. L.; Wei, J.; Zhang, H. Synthesis of graphene/conjugated polymer nanocomposites for electronic device applications. Nanoscale 2013, 5, 1440–1451.

    Article  Google Scholar 

  89. [89]

    Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

    Article  Google Scholar 

  90. [90]

    Wu, S. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 9, 1160–1172.

    Article  Google Scholar 

  91. [91]

    Huang, X.; Qi, X. Y.; Boey, F.; Zhang. H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  92. [92]

    Tan, C. L.; Huang, X.; Zhang, H. Synthesis and applications of graphene-based noble metal nanostructures. Mater. Today 2013, 16, 29–36.

    Article  Google Scholar 

  93. [93]

    Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  Google Scholar 

  94. [94]

    Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 2013, 4, 1227–1232.

    Article  Google Scholar 

  95. [95]

    Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185–2204.

    Article  Google Scholar 

  96. [96]

    Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. DOI: 10.1039/C4CS00182F. Published Online: Oct 8, 2014. http://pubs.rsc.org/en/content/articlelanding/2015/cs/c4cs00182f (accessed Oct 8, 2014).

    Google Scholar 

  97. [97]

    Zeng, Z. Y.; Tan, C. L.; Huang, X.; Bao, S. Y.; Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energ. Environ. Sci. 2014, 7, 797–803.

    Article  Google Scholar 

  98. [98]

    Hong, X.; Liu, J. Q.; Zheng, B.; Huang, X.; Zhang, X.; Tan, C. L.; Chen, J. Z.; Fan, Z. X.; Zhang, H. A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts. Adv. Mater. 2014, 26, 6250–6254.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Tan, C., Chen, J. et al. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 8, 40–55 (2015). https://doi.org/10.1007/s12274-014-0636-3

Download citation

Keywords

  • gold nanostructures
  • nanowires
  • nanobelts
  • nanoplates
  • nanosheets