Skip to main content
Log in

A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Combination therapy via nanoparticulate systems has already been proposed as a synergistic approach for cancer treatment. Herein, undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with sorafenib and surface-biofunctionalized with anti-CD326 antibody (Ab) were developed for cancer chemo-immunotherapy in MCF-7 and MDA-MB-231 breast cancer cells. The cytocompatibility study showed no significant toxicity for the bare and antibody-conjugated UnTHCPSi (Un-Ab) NPs at concentrations lower than 200 μg·mL−1. Compared to the bare UnTHCPSi, Un-Ab NPs loaded with sorafenib reduced the premature drug release in plasma, increasing the probability of proper drug targeting. In addition, high cellular interaction and subsequent internalization of the Un-Ab NPs into the cells expressing CD326 antigen demonstrated the possibility of improving antigen-mediated endocytosis via CD326 targeting. While an in vitro antitumor study revealed a higher inhibitory effect of the sorafenib-loaded Un-Ab NPs compared to the drug-loaded UnTHCPSi NPs in the CD326 positive MCF-7 cells, there was no difference in the anti-proliferation impact of both the abovementioned NPs in the CD326 negative MDA-MB-231 cells, suggesting CD326 as an appropriate receptor for Ab-mediated drug delivery. It was also shown that the anti-CD326 Ab can act as an immunotherapeutic agent by inducing antibody dependent cellular cytotoxicity and enhancing the interaction of effector immune and cancer cells for subsequent phagocytosis and cytokine secretion. Hence, the developed nanovectors can be applied for simultaneous tumor-selective drug targeting and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowak, A. K.; Lake, R. A.; Robinson, B. W. Combined chemoimmunotherapy of solid tumours: Improving vaccines. Adv. Drug Deliv. Rev. 2006, 58, 975–990.

    Article  Google Scholar 

  2. Lee, I. H.; An, S.; Yu, M. K.; Kwon, H. K.; Im, S. H.; Jon, S. Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J. Control. Release 2011, 155, 435–441.

    Article  Google Scholar 

  3. Molavi, O.; Xiong, X. B.; Douglas, D.; Kneteman, N.; Nagata, S.; Pastan, I.; Chu, Q.; Lavasanifar, A.; Lai, R. Anti-cd30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma. Biomaterials 2013, 34, 8718–8725.

    Article  Google Scholar 

  4. Maeda, H.; Matsumura, Y. Epr effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 129–130.

    Article  Google Scholar 

  5. Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626.

    Article  Google Scholar 

  6. Chattopadhyay, N.; Fonge, H.; Cai, Z.; Scollard, D.; Lechtman, E.; Done, S. J.; Pignol, J. P.; Reilly, R. M. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol. Pharmaceutics 2012, 9, 2168–2179.

    Google Scholar 

  7. Lu, Y. M.; Huang, J. Y.; Wang, H.; Lou, X. F.; Liao, M. H.; Hong, L. J.; Tao, R. R.; Ahmed, M. M.; Shan, C. L.; Wang, X. L. et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated peg-lipid nanoparticles. Biomaterials 2014, 35, 530–537.

    Article  Google Scholar 

  8. Fiandra, L.; Mazzucchelli, S.; De Palma, C.; Colombo, M.; Allevi, R.; Sommaruga, S.; Clementi, E.; Bellini, M.; Prosperi, D.; Corsi, F. Assessing the in vivo targeting efficiency of multifunctional nanoconstructs bearing antibody-derived ligands. ACS Nano 2013, 7, 6092–6102.

    Article  Google Scholar 

  9. Weiner, L. M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327.

    Article  Google Scholar 

  10. Portnoy, E.; Lecht, S.; Lazarovici, P.; Danino, D.; Magdassi, S. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine 2011, 7, 480–488.

    Article  Google Scholar 

  11. Berlin, J. M.; Pham, T. T.; Sano, D.; Mohamedali, K. A.; Marcano, D. C.; Myers, J. N.; Tour, J. M. Noncovalent functionalization of carbon nanovectors with an antibody enables targeted drug delivery. ACS Nano 2011, 5, 6643–6650.

    Article  Google Scholar 

  12. Gu, L.; Ruff, L. E.; Qin, Z.; Corr, M.; Hedrick, S. M.; Sailor, M. J. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic cd40 antibody. Adv. Mater. 2012, 24, 3981–3987.

    Article  Google Scholar 

  13. Illum, L.; Jones, P. D.; Baldwin, R. W.; Davis, S. S. Tissue distribution of poly(hexyl-2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts. J. Pharmacol. Exp. Ther. 1984, 230, 733–736.

    Google Scholar 

  14. Chinol, M.; Casalini, P.; Maggiolo, M.; Canevari, S.; Omodeo, E. S.; Caliceti, P.; Veronese, F. M.; Cremonesi, M.; Chiolerio, F.; Nardone, E. et al. Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br. J. Cancer 1998, 78, 189–197.

    Article  Google Scholar 

  15. Scott, D.; Nitecki, D. E.; Kindler, H.; Goodman, J. W. Immunogenicity of biotinylated hapten-avidin complexes. Mol. Immunol. 1984, 21, 1055–1060.

    Article  Google Scholar 

  16. Zhao, J.; Mi, Y.; Liu, Y.; Feng, S. S. Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 2012, 33, 1948–1958.

    Article  Google Scholar 

  17. Liu, Y.; Li, K.; Liu, B.; Feng, S. S. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 2010, 31, 9145–9155.

    Article  Google Scholar 

  18. Venturelli, E.; Fabbro, C.; Chaloin, O.; Menard-Moyon, C.; Smulski, C. R.; Da Ros, T.; Kostarelos, K.; Prato, M.; Bianco, A. Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. Small 2011, 7, 2179–2187.

    Article  Google Scholar 

  19. Firer, M. A.; Gellerman, G. Targeted drug delivery for cancer therapy: The other side of antibodies. J. Hematol. Oncol. 2012, 5, 70.

    Article  Google Scholar 

  20. Mitra, M.; Misra, R.; Harilal, A.; Sahoo, S. K.; Krishnakumar, S. Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells. Mol. Vis. 2011, 17, 2724–2737.

    Google Scholar 

  21. Winter, M. J.; Nagtegaal, I. D.; van Krieken, J. H.; Litvinov, S. V. The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am. J. Pathol. 2003, 163, 2139–2148.

    Article  Google Scholar 

  22. Martowicz, A.; Spizzo, G.; Gastl, G.; Untergasser, G. Phenotype-dependent effects of epcam expression on growth and invasion of human breast cancer cell lines. BMC Cancer 2012, 12, 501.

    Article  Google Scholar 

  23. Santos, H. A.; Bimbo, L. M.; Herranz, B.; Shahbazi, M. A.; Hirvonen, J.; Salonen, J. Nanostructured porous silicon in preclinical imaging: Moving from bench to bed side. J. Mater. Res. 2013, 28, 152–164.

    Article  Google Scholar 

  24. Shahbazi, M. A.; Almeida, P. V.; Mäkilä, E.; Correia, A.; Ferreira, M. P.; Kaasalainen, M.; Salonen, J.; Hirvonen, J.; Santos, H. A. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization. Macromol. Rapid Commun. 2014, 35, 624–629.

    Article  Google Scholar 

  25. Shahbazi, M. A.; Hamidi, M.; Mäkilä, E. M.; Zhang, H.; Almeida, P. V.; Kaasalainen, M.; Salonen, J. J.; Hirvonen, J. T.; Santos, H. A. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 2013, 34, 7776–7789.

    Article  Google Scholar 

  26. Shahbazi, M. A.; Herranz, B.; Santos, H. A. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2012, 2, 296–312.

    Article  Google Scholar 

  27. Barnes, T. J.; Jarvis, K. L.; Prestidge, C. A. Recent advances in porous silicon technology for drug delivery. Ther. Deliv. 2013, 4, 811–823.

    Article  Google Scholar 

  28. Zhang, M.; Xu, R.; Xia, X.; Yang, Y.; Gu, J.; Qin, G.; Liu, X.; Ferrari, M.; Shen, H. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials 2014, 35, 423–431.

    Article  Google Scholar 

  29. Tabasi, O.; Falamaki, C.; Khalaj, Z. Functionalized mesoporous silicon for targeted-drug-delivery. Colloids Surf. B-Biointerfaces 2012, 98, 18–25.

    Article  Google Scholar 

  30. Ferris, D. P.; Lu, J.; Gothard, C.; Yanes, R.; Thomas, C. R.; Olsen, J. C.; Stoddart, J. F.; Tamanoi, F.; Zink, J. I. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 2011, 7, 1816–1826.

    Article  Google Scholar 

  31. Xu, R.; Huang, Y.; Mai, J.; Zhang, G.; Guo, X.; Xia, X.; Koay, E. J.; Qin, G.; Erm, D. R.; Li, Q. et al. Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small 2013, 9, 1799–1808.

    Article  Google Scholar 

  32. Rytkönen, J.; Arukuusk, P.; Xu, W.; Kurrikoff, K.; Langel, U.; Lehto, V. P.; Närvänen, A. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides. Mol. Pharmaceutics 2013, 11, 382–390.

    Article  Google Scholar 

  33. Secret, E.; Smith, K.; Dubljevic, V.; Moore, E.; Macardle, P.; Delalat, B.; Rogers, M. L.; Johns, T. G.; Durand, J. O.; Cunin, F. et al. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Health. Mater. 2013, 2, 718–727.

    Article  Google Scholar 

  34. Santos, H. A.; Riikonen, J.; Salonen, J.; Mäkilä, E.; Heikkilä, T.; Laaksonen, T.; Peltonen, L.; Lehto, V. P.; Hirvonen, J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010, 6, 2721–2731.

    Article  Google Scholar 

  35. Shrestha, N; Shahbazi, M. A; Araújo, F; Zhang, H; Mäkilä, E; Kauppila, J; Sarmento, B; Salonen, J; Hirvonen, J; Santos, H. A. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials 2014, 35, 7172–7179.

    Article  Google Scholar 

  36. Shahbazi, M. A.; Almeida, P. V.; Mäkilä, E.; Kaasalainen, N.; Salonen, J.; Hirvonen, J.; Santos, H. A. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials 2014, 35, 7488–7500.

    Article  Google Scholar 

  37. Jalkanen, T.; Mäkilä, E.; Sakka, T.; Salonen, J.; Ogata, Y. H. Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Res. Lett. 2012, 7, 311.

    Article  Google Scholar 

  38. Occhipinti, E.; Verderio, P.; Natalello, A.; Galbiati, E.; Colombo, M.; Mazzucchelli, S.; Salvade, A.; Tortora, P.; Doglia, S. M.; Prosperi, D. Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale 2011, 3, 387–390.

    Article  Google Scholar 

  39. Danhier, F.; Feron, O.; Preat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

    Article  Google Scholar 

  40. Sasidharan, S.; Jayasree, A.; Fazal, S.; Koyakutty, M.; Nair, S. V.; Menon, D. Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells. Biomater. Sci. 2013, 1, 294–305.

    Article  Google Scholar 

  41. Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai) 2007, 39, 549–559.

    Article  Google Scholar 

  42. Kwon, I. K.; Lee, S. C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release 2012, 164, 108–114.

    Article  Google Scholar 

  43. Shen, J.; Sun, H.; Meng, Q.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol. Pharmaceutics 2014, 11, 3342–3351.

    Article  Google Scholar 

  44. Seidel, U. J.; Schlegel, P.; Lang, P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front. Immunol. 2013, 4, 76.

    Article  Google Scholar 

  45. Weiner, L. M.; Dhodapkar, M. V.; Ferrone, S. Monoclonal antibodies for cancer immunotherapy. Lancet 2009, 373, 1033–1040.

    Article  Google Scholar 

  46. Chowdhury, F.; Lode, H. N.; Cragg, M. S.; Glennie, M. J.; Gray, J. C. Development of immunomonitoring of antibody-dependent cellular cytotoxicity against neuroblastoma cells using whole blood. Cancer Immunol. Immunother. 2014, 63, 559–569.

    Article  Google Scholar 

  47. Iannello, A.; Ahmad, A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 2005, 24, 487–499.

    Article  Google Scholar 

  48. van Sorge, N. M.; van der Pol, W. L.; van de Winkel, J. G. Fcgammar polymorphisms: Implications for function, disease susceptibility and immunotherapy. Tissue Antigens 2003, 61, 189–202.

    Article  Google Scholar 

  49. Smith, K. A. Interleukin-2: Inception, impact, and implications. Science 1988, 240, 1169–1176.

    Article  Google Scholar 

  50. Strome, S. E.; Sausville, E. A.; Mann, D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 2007, 12, 1084–1095.

    Article  Google Scholar 

  51. Kawaguchi, Y.; Kono, K.; Mimura, K.; Sugai, H.; Akaike, H.; Fujii, H. Cetuximab induce antibody-dependent cellular cytotoxicity against egfr-expressing esophageal squamous cell carcinoma. Int. J. Cancer 2007, 120, 781–787.

    Article  Google Scholar 

  52. El-Dakdouki, M. H.; Pure, E.; Huang, X. Development of drug loaded nanoparticles for tumor targeting. Part 1: Synthesis, characterization, and biological evaluation in 2D cell cultures. Nanoscale 2013, 5, 3895–3903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad-Ali Shahbazi or Hélder A. Santos.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, MA., Shrestha, N., Mäkilä, E. et al. A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Res. 8, 1505–1521 (2015). https://doi.org/10.1007/s12274-014-0635-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0635-4

Keywords

Navigation