Skip to main content
Log in

An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 surface has been modified with H3PO4. After coating at 80 °C, the products were heated further at a moderate temperature of 500 °C in air, when the added H3PO4 transformed to Li3PO4 after reacting with residual LiOH and Li2CO3 on the surface. A thin and uniform smooth nanolayer (< 10 nm) was observed on the surface of Li[Ni0.6Co0.2Mn0.2]O2 as confirmed by transmission electron microscopy (TEM). Time-of-flight secondary ion mass spectroscopic (ToF-SIMS) data exhibit the presence of LiP+, LiPO+, and Li2PO +2 fragments, indicating the formation of the Li3PO4 coating layer on the surface of the Li[Ni0.6Co0.2Mn0.2]O2. As a result, the amounts of residual lithium compounds, such as LiOH and Li2CO3, are significantly reduced. As a consequence, the Li3PO4-coated Li[Ni0.6Co0.2Mn0.2]O2 exhibits noticeable improvement in capacity retention and rate capability due to the reduction of residual LiOH and Li2CO3. Further investigation of the extensively cycled electrodes by X-ray diffraction (XRD), TEM, and ToF-SIMS demonstrated that the Li3PO4 coating layers have multi-functions: Absorption of water in the electrolyte that lowers the HF level, HF scavenging, and protection of the active materials from deleterious side reactions with the electrolyte during extensive cycling, enabling high capacity retention over 1,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  Google Scholar 

  2. Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Prakash, J.; Belharouak, I.; Amine, K. High energy cathode material for long life and safe lithium ion battery. Nat. Mater. 2009, 8, 320–324.

    Article  Google Scholar 

  3. Chen, C. H.; Liu, J.; Stoll, M. E.; Henriksen, G.; Vissers, D. R.; Amine, K. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 2004, 128, 278–285.

    Article  Google Scholar 

  4. Woo, S.-W.; Myung, S.-T.; Bang, H.; Kim, D.-W.; Sun, Y.-K. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim. Acta 2009, 54, A163–A166.

    Google Scholar 

  5. Kunduraci, M.; Al-Sharab, J. F.; Amatucci, G. G. High-power nanostructured LiMn2−x NixO4 high-voltage lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology. Chem. Mater. 2006, 18, 3585–3592.

    Article  Google Scholar 

  6. Reimers, J. N.; Dahn, J. R. Electrochemical and in-situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091–2097.

    Article  Google Scholar 

  7. Chen, Z.; Dahn, J. R. Method to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090.

    Article  Google Scholar 

  8. Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 1996, 83, 167–173.

    Article  Google Scholar 

  9. Jiang, J.; Dahn, J. R. ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes. Electrochem. Commun. 2004, 6, 724–728.

    Article  Google Scholar 

  10. Belharouak, I.; Sun, Y.-K.; Liu, J.; Amine, K. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power application. J. Power Sources 2003, 132, 247–252.

    Article  Google Scholar 

  11. Lee, M.-H.; Kang, Y.-J.; Myung, S.-T.; Sun, Y.-K. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim. Acta 2004, 50, 939–948.

    Article  Google Scholar 

  12. Liao, P. Y.; Duh, J. G.; Sheen, S. R. Effect of Mn content on the microstructure and electrochemical properties of LiNi0.75−x Co0.25MnxO2 cathode materials. J. Electrochem. Soc. 2005, 152, A1695–A1700.

    Article  Google Scholar 

  13. Eom, J.-H.; Kim, M.-G.; Cho, J.-P. Storage characteristic of LiNi0.8Co0.1+x Mn0.1−x O2 (x = 0, 0.03, 0.06) cathode materials for lithium batteries. J. Electrochem. Soc. 2008, 155, A239–A245.

    Article  Google Scholar 

  14. Lee, K.-S.; Myung, S.-T.; Amine, K.; Yashiro, H.; Sun, Y.-K. Structural and electrochemical properties of layered Li[Ni1−2x CoxMnx]O2 (x = 0.1–0.3) positive electrode materials for Li-ion batteries. J. Electrochem. Soc. 2007, 154, A971–A977.

    Article  Google Scholar 

  15. Noh, H.-J.; Yoon, S.-J.; Yoon, C.-S.; Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batterties. J. Power Sources 2014, 233, 121–130.

    Article  Google Scholar 

  16. Cho, D.-H.; Jo, C.-H.; Cho, W.-S.; Kim, Y.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J. Electrochem. Soc. 2014, 161, A920–A926.

    Article  Google Scholar 

  17. Myung, S.-T.; Izumi, K.; Komaba, S.; Sun, Y.-K.; Yashiro, H.; Kumagai, N. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater. 2005, 17, 2427–2435.

    Article  Google Scholar 

  18. Bettge, M.; Li, Y.; Sankaran, B.; Rago, N. D.; Spila, T.; Haasch, R. T.; Petrov, I.; Abraham, D. P. Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina. J. Power Sources 2013, 233, 346–357.

    Article  Google Scholar 

  19. Myung, S.-T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y.-K.; Kumagai, N. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J. Phys. Chem. C 2007, 111, 4061–4067.

    Article  Google Scholar 

  20. Lee, D.-J.; Scrosati, B.; Sun, Y.-K. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C. J. Power Sources 2011, 196, 7745–7746.

    Google Scholar 

  21. Appapillai, A. T.; Mansour, A. N.; Cho, J.-P.; Shao-Horn, Y. Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: Combined STEM and XPS studies. Chem. Mater. 2007, 19, 5748–5757.

    Article  Google Scholar 

  22. Lu, Y.-C.; Mansour, A. N.; Yabuuchi, N.; Shao-Horn, Y. Probing the origin of enhanced stability of AlPO4 nanoparticle coated LiCoO2 during cycling to high voltages: Combined XRD and XPS studies. Chem. Mater. 2009, 19, 4408–4424.

    Article  Google Scholar 

  23. Myung, S.-T.; Lee, K.-S.; Yoon, C.-S.; Sun, Y.-K.; Amine, K.; Yashiro, H. Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2. J. Phys. Chem. C 2010, 114, 4710–4718.

    Article  Google Scholar 

  24. Lee, K.-S.; Myung, S.-T.; Amine, K.; Yashiro, H.; Sun, Y.-K. Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J. Mater. Chem. 2009, 19, 1995–2005.

    Article  Google Scholar 

  25. Rosina, K. J.; Jiang, M.; Zeng, D. L.; Salager, E.; Best, A. S.; Grey. C. P. Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries. J. Mater. Chem. 2012, 22, 20602–20610.

    Article  Google Scholar 

  26. Verdier, S.; El Ouatani, L.; Dedryvere, R.; Bonhomme, F.; Biensan, P.; Gonbeau, D. J. XPS study on Al2O3- and AlPO4-coated LiCoO2 cathode material for high-capacity Li ion batteries. J. Electrochem. Soc. 2007, 154, A1088–A1099.

    Article  Google Scholar 

  27. Yu, X. H.; Bates, J. B.; Jellison, G. E.; Hart, F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 1997, 144, 524–532.

    Article  Google Scholar 

  28. Cho, Y.-M.; Yang, Y.-M.; Park, D.-S.; Kwon, S.-B.; Jung, W.-S.; Lee, J.-Y. Study on CO2 absorption on LiOH-modified Al2O3. Appl. Mech. Mater. 2013, 284, 342–346.

    Article  Google Scholar 

  29. Aurbach, D.; Levi, M. D.; Levi, E.; Markovsky, B.; Salitra, G.; Teller, H.; Heider, U.; Heider, L. On the electroanalytical characterization of LixCoO2, LixNiO2 and LiMn2O4 (spinel) electrodes in repeated lithium intercalation-deintercalation processes. Mater. Res. Soc. Symp. Proc. 1998, 496, 435–441.

    Article  Google Scholar 

  30. Kim, G.-H.; Myung, S.-T.; Bang, H. J.; Prakash. J.; Sun, Y.-K. Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3−x)Mgx]O22yFy, via coprecipitation. Electrochem. Solid-State Lett. 2004, 7, A477–A480.

    Article  Google Scholar 

  31. Kim, G.-H.; Kim, J.-H.; Myung, S.-T.; Yoon, C. S.; Sun, Y.-K. Improvement of high-voltage cycling behavior of surface-modified Li[Ni1/3Co1/3Mn1/3]O2 cathodes by fluorine substitution for Li-ion batteries. J. Electrochem. Soc. 2005, 152, A1707–A1713.

    Article  Google Scholar 

  32. Edstrom, K.; Gustafsson, T.; Thomas, J. O. The cathode-electrolyte interface in the Li-ion battery. Elctrochim. Acta 2004, 50, 397–403.

    Article  Google Scholar 

  33. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.

    Article  Google Scholar 

  34. Lux, S. F.; Lucas, I. T.; Pollak, E.; Passerini, S.; Winter, M.; Kostecki, R. The mechanism of HF formation in LiPF6 based organic carbonate electrolyte. Electrochem. Commun. 2012, 14, 47–50.

    Article  Google Scholar 

  35. Tasaki, K.; Kanda, K.; Nakamura, S.; Ue, M. Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes. Density functional theory and molecular dynamics studies. J. Electrochem. Soc. 2003, 150, A1628–A1636.

    Article  Google Scholar 

  36. Aurbach, D. Electrochemical behavior of lithium salt solutions of γ-butyrolactone with noble metal electrodes. J. Electrochem. Soc. 1989, 136, 906–913.

    Article  Google Scholar 

  37. Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J. B.; Kinoshita, K. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem. Solid-State Lett. 2001, 4, A42–A44.

    Article  Google Scholar 

  38. Myung, S.-T.; Amine, K.; Sun, Y.-K. Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. J. Mater. Chem. 2010, 20, 7074–7095.

    Article  Google Scholar 

  39. Cohn, M. Phosphate-water exchange reaction catalyzed by inorganic pyrophosphatease of yeast. J. Biol. Chem. 1958, 230, 369–380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-Kook Sun or Seung Taek Myung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, CH., Cho, DH., Noh, HJ. et al. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 8, 1464–1479 (2015). https://doi.org/10.1007/s12274-014-0631-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0631-8

Keywords

Navigation