Skip to main content

Applications of phototheranostic nanoagents in photodynamic therapy

Abstract

Nanotherapeutics has an increasing role in the treatment of diseases such as cancer. In photodynamic therapy (PDT) a therapeutically inactive photosensitizer compound is selectively activated by light to produce molecules capable of killing diseased cells and pathogens. A phototheranostic agent can be defined as a single nanoentity with the capabilities for targeted delivery, optical imaging and photodynamic treatment of a disease. Malignant cells, tissue and microbial etiologic agents can be effectively targeted by PDT. Photodynamic therapy is noninvasive, or minimally invasive, and has few side effects as damage to healthy tissue is minimized and the killing effect is localized. Various forms of cancer, acne and other diseases may be treated. The in vivo efficacy of photosensitizers is further improved by attaching them to nanostructures capable of targeting the diseased site. Such photosensitizer-functionalized nanostructures, or nanotherapeutics, allow site-specific delivery of imaging and therapeutic agents for improved phototheranostic performance. This review explores the potential applications of phototheranostic nanostructures in diagnosis and therapy.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Detty, M. R. Photosensitisers for the photodynamic therapy of cancer and other diseases. Expert Opin. Ther. Pat. 2001, 11, 1849–1860.

    Google Scholar 

  2. [2]

    Stockert, J. C.; Cañete, M.; Juarranz, A.; Villanueva, A.; Horobin, R. W.; Borrell, J. I.; Teixidó, J.; Nonell, S. Porphycenes: Facts and prospects in photodynamic therapy of cancer. Curr. Med. Chem. 2007, 14, 997–1026.

    Google Scholar 

  3. [3]

    Bhojani, M. S.; Van Dort, M.; Rehemtulla, A.; Ross, B. D. Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol. Pharmaceutics 2010, 7, 1921–1929.

    Google Scholar 

  4. [4]

    Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv Rev. 2010, 62, 1052–1063.

    Google Scholar 

  5. [5]

    Kudinova, N. V.; Berezov, T. T. Photodynamic therapy of cancer: Search for ideal photosensitizer. Biochemistry (Moscow) 2010, 4, 95–103.

    Google Scholar 

  6. [6]

    Rai, P.; Mallidi, S.; Zheng, X.; Rahmanzadeh, R.; Mir, Y.; Elrington, S.; Khurshid, A.; Hasan, T. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv Rev. 2010, 62, 1094–1124.

    Google Scholar 

  7. [7]

    Fernandez-Fernandez, A.; Manchanda, R.; McGoron, A. J. Theranostic applications of nanomaterials in cancer: Drug delivery, image-guided therapy, and multifunctional platforms. Appl. Biochem. Biotechnol. 2011, 165, 1628–1651.

    Google Scholar 

  8. [8]

    Kelkar, S. S.; Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879–1903.

    Google Scholar 

  9. [9]

    Kievit, F. M.; Zhang, M. Q. Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater. 2011, 23, H217–H247.

    Google Scholar 

  10. [10]

    Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1029–1038.

    Google Scholar 

  11. [11]

    Choi, K. Y.; Liu, G.; Lee, S.; Chen, X. Y. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives. Nanoscale 2012, 4, 330–342.

    Google Scholar 

  12. [12]

    Lim, C. K.; Heo, J.; Shin, S.; Jeong, K.; Seo, Y. H.; Jang, W. D.; Park, C. R.; Park, S. R.; Kim, S.; Kwon, I. C. Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett. 2012, 334, 176–187.

    Google Scholar 

  13. [13]

    Melancon, M. P.; Stafford, R. J.; Li, C. Challenges to effective cancer nanotheranostics. J. Control. Release 2012, 164, 177–182.

    Google Scholar 

  14. [14]

    Prabhu, P.; Patravale, V. The upcoming field of theranostic nanomedicine: An overview. J. Biomed. Nanotechnol. 2012, 8, 859–882.

    Google Scholar 

  15. [15]

    Wang, S. Y.; Fan, W. Z.; Kim, G.; Hah, H. J.; Lee, Y. E.; Kopelman, R.; Ethirajan, M.; Gupta, A.; Goswami, L. N.; Pera, P.; Morgan, J.; Pandey R. K. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy. Laser Surg. Med. 2011, 43, 686–695.

    Google Scholar 

  16. [16]

    Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C 2013, 15, 53–72.

    Google Scholar 

  17. [17]

    Caldorera-Moore, M. E.; Liecty, W. B.; Peppas, N. A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc. Chem. Res. 2011, 44, 1061–1070.

    Google Scholar 

  18. [18]

    Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliver. Rev. 2012, 64, 1394–1416.

    Google Scholar 

  19. [19]

    Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356.

    Google Scholar 

  20. [20]

    Frangioni, J. V. New technologies for human cancer imaging. J. Clin. Oncol. 2008, 26, 4012–4021.

    Google Scholar 

  21. [21]

    Khdair, A.; Handa, H.; Mao, G. Z.; Panyam, J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur. J. Pharm. Biopharm. 2009, 71, 214–222.

    Google Scholar 

  22. [22]

    Allison, R. R.; Sibata, C. H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagn. Photodyn. 2010, 7, 61–75.

    Google Scholar 

  23. [23]

    McCarthy, J. R.; Bhaumik, J.; Karver, M. R.; Erdem, S. S.; Weissleder, R. Targeted nanoagents for the detection of cancers. Mol. Oncol. 2010, 4, 511–528.

    Google Scholar 

  24. [24]

    Coll, J. L. Cancer optical imaging using fluorescent nanoparticles. Nanomedicine 2011, 6, 7–10.

    Google Scholar 

  25. [25]

    Lee, D. Y.; Li, K. C. P. Molecular theranostics: A primer for the imaging professional. Am. J. Roentgenol. 2011, 197, 318–324.

    Google Scholar 

  26. [26]

    Lee, S. J.; Koo, H.; Lee, D. E.; Min, S.; Lee, S.; Chen, X. Y.; Choi, Y.; Leary, J. F.; Park, K.; Jeong, S. Y. et al. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 2011, 32, 4021–4029.

    Google Scholar 

  27. [27]

    Ogura, S. I.; Hagiya, Y.; Tabata, K.; Kamachi, T.; Okura, I. Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis. Curr. Top. Med. Chem. 2012, 12, 176–184.

    Google Scholar 

  28. [28]

    Guo, S. T.; Huang, L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol. Adv. 2014, 32, 778–788.

    Google Scholar 

  29. [29]

    He, H. N.; David, A.; Chertok, B.; Cole, A.; Lee, K.; Zhang, J.; Wang, J. X.; Huang, Y. Z.; Yang, V. C. Magnetic nanoparticles for tumor imaging and therapy: A so-called theranostic system. Pharm. Res. 2013, 30, 2445–2458.

    Google Scholar 

  30. [30]

    Pagonis, T. C.; Chen, J.; Fontana, C. R.; Devalapally, H.; Ruggiero, K.; Song, X. Q.; Foschi, F.; Dunham, J.; Skobe, Z.; Yamazaki, H. et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J. Endodont. 2010, 36, 322–328.

    Google Scholar 

  31. [31]

    Wainwright, M.; Smalley, H.; Flint, C. The use of photosensitisers in acne treatment. J. Photochem. Photobiol. B 2011, 105, 1–5.

    Google Scholar 

  32. [32]

    Nagata, J. Y.; Hioka, N.; Kimura, E.; Batistela, V. R.; Terada, R. S. S.; Graciano, A. X.; Baesso, M. L.; Hayacibara, M. F. Antibacterial photodynamic therapy for dental caries: Evaluation of the photosensitizers used and light source properties. Photodiagn. Photodyn. 2012, 9, 122–131.

    Google Scholar 

  33. [33]

    Dastgheyb, S. S.; Eckmann, D. M.; Composto, R. J.; Hickok, N. J. Photo-activated porphyrin in combination with antibiotics: Therapies against Staphylococci. J. Photochem. Photobiol. B 2013, 129, 27–35.

    Google Scholar 

  34. [34]

    Sperandio, F. F.; Huang, Y. Y.; Hamblin, M. R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat. Anti-Infect. Drug Discovery 2013, 8, 108–120.

    Google Scholar 

  35. [35]

    Yildirim, C.; Karaarslan, E. S.; Ozsevik, S.; Zer, Y.; Sari, T.; Usumez, A. Antimicrobial efficiency of photodynamic therapy with different irradiation durations. Eur. J. Dent. 2013, 7, 469–473.

    Google Scholar 

  36. [36]

    Rockson, S. G.; Lorenz, D. P.; Cheong, W. F.; Woodburn, K. W. Photoangioplasty: An emerging clinical cardiovascular role for photodynamic therapy. Circulation 2000, 102, 591–596.

    Google Scholar 

  37. [37]

    Kossodo, S.; LaMuraglia, G. M. Clinical potential of photodynamic therapy in cardiovascular disorders. Am. J. Cardiovasc. Drugs 2001, 1, 15–21.

    Google Scholar 

  38. [38]

    Chou, T. M.; Woodburn, K. W.; Cheong, W. F.; Lacy, S. A.; Sudhir, K.; Adelman, D. C.; Wahr, D. Photodynamic therapy: Applications in atherosclerotic vascular disease with motexafin lutetium. Catheter Cardio. Inte. 2002, 57, 387–394.

    Google Scholar 

  39. [39]

    McCarthy, J. R. Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv. Drug Deliv. Rev. 2010, 62, 1023–1030.

    Google Scholar 

  40. [40]

    McCarthy, J. R. Nanomedicine and cardiovascular disease. Curr. Cardiovasc. Imaging Rep. 2010, 3, 42–49.

    Google Scholar 

  41. [41]

    Drakopoulou, M.; Toutouzas, K.; Michelongona, A.; Tousoulis, D.; Stefanadis, C. Vulnerable plaque and inflammation: Potential clinical strategies. Curr. Pharm. Design 2011, 17, 4190–4209.

    Google Scholar 

  42. [42]

    Xia, L.; Kong, X. G.; Liu, X. M.; Tu, L. P.; Zhang, Y. L.; Chang, Y. L.; Liu, K.; Shen, D. Z.; Zhao, H. Y.; Zhang, H. An upconversion nanoparticle-Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials 2014, 35, 4146–4156.

    Google Scholar 

  43. [43]

    Guo, M.; Mao, H. J.; Li, Y. L.; Zhu, A. J.; He, H.; Yang, H.; Wang, Y. Y.; Tian, X.; Ge, C. C.; Peng, Q. L. et al. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 2014, 35, 4656–4666.

    Google Scholar 

  44. [44]

    Chen, Q.; Wang, C.; Cheng, L.; He, W. W.; Cheng, Z. P.; Liu, Z. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 2014, 35, 2915–2923.

    Google Scholar 

  45. [45]

    Seo, S. H.; Kim, B. M.; Joe, A.; Han, H. W.; Chen, X. Y.; Cheng, Z.; Jang, E. S. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 2014, 35, 3309–3318.

    Google Scholar 

  46. [46]

    Gollavelli, G.; Ling, Y. C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials 2014, 35, 4499–4507.

    Google Scholar 

  47. [47]

    Ren, Y.; Wang, R. R.; Liu, Y.; Guo, H.; Zhou, X.; Yuan, X. B.; Liu, C. Y.; Tian, J. G.; Yin, H. F.; Wang, Y. S. et al. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 2014, 35, 2462–2470.

    Google Scholar 

  48. [48]

    Kang, T.; Gao, X. L.; Hu, Q. Y.; Jiang, D.; Feng, X. Y.; Zhang, X.; Song, Q. X.; Yao, L.; Huang, M.; Jiang, X. G. et al. iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas. Biomaterials 2014, 35, 4319–4332.

    Google Scholar 

  49. [49]

    Wang, B. K.; Wang, J. H.; Liu, Q.; Huang, H.; Chen, M.; Li, K. Y.; Li, C. Z.; Yu, X. F.; Chu, P. K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 2014, 35, 1954–1966.

    Google Scholar 

  50. [50]

    Sherlock, S. P.; Dai, H. J. Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res. 2011, 4, 1248–1260.

    Google Scholar 

  51. [51]

    Robinson, J. T.; Welsher, K. S.; Tabakman, M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    Google Scholar 

  52. [52]

    Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249–258.

    Google Scholar 

  53. [53]

    Wang, D.; Li, Y. G.; Hasin, P.; Wu, Y. Y. Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. Nano Res. 2011, 4, 124–130.

    Google Scholar 

  54. [54]

    Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Google Scholar 

  55. [55]

    Wang, X.; Yang, C. X.; Chen, J. T.; Yan, X. P. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy. Anal. Chem. 2014, 86, 3263–3267.

    Google Scholar 

  56. [56]

    Topete, A.; Alatorre-Meda, M.; Iglesias, P.; Villar-Alvarez, E. M.; Barbosa, S.; Costoya, J. A. Taboada, P.; Mosquera, V. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 2014, 8, 2725–2738.

    Google Scholar 

  57. [57]

    Zhang, Y. R.; Pang L.; Ma, C.; Tu, Q.; Zhang, R.; Saeed, E.; Mahmoud, A. E.; Wang, J. Y. Small molecule-initiated light-activated semiconducting polymer dots: An integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal. Chem. 2014, 86, 3092–3099.

    Google Scholar 

  58. [58]

    Lee, S.; Koo, H.; Na, J. H.; Han, S. J.; Min, H. S.; Lee, S. J.; Kim, S. H.; Yun, S. H.; Jeong, S. Y.; Kwon, I. C. et al. Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano 2014, 8, 2048–2063.

    Google Scholar 

  59. [59]

    Curry, T.; Kopelman, R.; Shilo, M.; Popovtzer, R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol. I. 2014, 9, 53–61.

    Google Scholar 

  60. [60]

    Funkhouser, J. Reintroducing pharma: Theranostic revolution. Curr. Drug Discov. 2002, 2, 17–19.

    Google Scholar 

  61. [61]

    Whitesides, G. M. The ‘right’ size in nanobiotechnology. Nat. Biotechnol. 2003, 21, 1161–1165.

    Google Scholar 

  62. [62]

    Sumer, B.; Gao, J. M. Theranostic nanomedicine for cancer. Nanomedicine 2008, 3, 137–140.

    Google Scholar 

  63. [63]

    Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

    Google Scholar 

  64. [64]

    McCarthy, J. R. The future of theranostic nanoagents. Nanomedicine 2009, 4, 693–695.

    Google Scholar 

  65. [65]

    Dhar, S.; Liu, Z.; Thomale, J.; Dai, H. J.; Lippard, S. J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 2008, 130, 11467–11476.

    Google Scholar 

  66. [66]

    Bhirde, A. A.; Patel, V.; Gavard, J.; Zhang, G. F.; Sousa, A. A.; Masedunskas, A.; Leapman, R. D.; Weigert, R.; Gutkind, J. S.; Rusling, J. F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009, 3, 307–316.

    Google Scholar 

  67. [67]

    Shvedova, A. A.; Kagan, V. E. The role of nanotoxicology in realizing the ‘helping without harm’ paradigm of nanomedicine: Lessons from studies of pulmonary effects of single-walled carbon nanotubes. J. Intern. Med. 2010, 267, 106–118.

    Google Scholar 

  68. [68]

    Richard, C.; Doan, B. T.; Beloeil, J. C.; Bessodes, M.; Tóth, É.; Scherman, D. Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: Toward powerful T1 and T2 MRI contrast agents. Nano Lett. 2008, 8, 232–236.

    Google Scholar 

  69. [69]

    McDevitt, M. R.; Chattopadhyay, D.; Kappel, B. J.; Jaggi, J. S.; Schiffman, S. R.; Antczak, C.; Njardarson, J. T.; Brentjens, R.; Scheinberg, D. A. Tumor targeting with antibody functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 2007, 48, 1180–1189.

    Google Scholar 

  70. [70]

    Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

    Google Scholar 

  71. [71]

    Dennany, L.; Sherrell, P.; Chen, J.; Innis, P. C.; Wallace, G. G.; Minett, A. I. EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials. Phys. Chem. Chem. Phys. 2010, 12, 4135–4141.

    Google Scholar 

  72. [72]

    Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592–599.

    Google Scholar 

  73. [73]

    Ponce, A. M.; Vujaskovic, Z.; Yuan, F.; Needham, D.; Dewhirst, M. W. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia 2006, 22, 205–213.

    Google Scholar 

  74. [74]

    Chen, Q.; Tong, S.; Dewhirst, M. W.; Yuan, F. Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol. Cancer Ther. 2004, 3, 1311–1317.

    Google Scholar 

  75. [75]

    Miele, E.; Spinelli, G. P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 2009, 4, 99–105.

    Google Scholar 

  76. [76]

    Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P. Y.; Geissbühler, I.; Demurtas, D.; Dubochet, J.; Vogel, H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. 2006, 45, 5478–5483.

    Google Scholar 

  77. [77]

    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Google Scholar 

  78. [78]

    Yao, J.; Larson, D. R.; Vishwasrao, H. D.; Zipfel, W. R.; Webb, W. W. Blinking and nonradiant dark fraction of water soluble quantum dots in aqueous solution. Proc. Natl. Acad. Sci. USA 2005, 102, 14284–14289.

    Google Scholar 

  79. [79]

    Bagalkot, V.; Zhang, L. F.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C. Quantum dotaptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007, 7, 3065–3070.

    Google Scholar 

  80. [80]

    Biju, V.; Mundayoor, S.; Omkumar, R. V.; Anas, A.; Ishikawa, M. Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnol. Adv. 2010, 28, 199–213.

    Google Scholar 

  81. [81]

    Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: Potential cancer theranostics. J. Mater. Chem. 2009, 19, 1252–1257.

    Google Scholar 

  82. [82]

    Senpan, A.; Caruthers, S. D.; Rhee, I.; Mauro, N. A.; Pan, D.; Hu, G.; Scott, M. J.; Fuhrhop, R. W.; Gaffney, P. J.; Wickline, S. A. et al. Conquering the dark side: Colloidal iron oxide nanoparticles. ACS Nano 2009, 3, 3917–3926.

    Google Scholar 

  83. [83]

    Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J. H.; Gao, J. H.; Li, X. G.; Chen. X. Y. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31, 3016–3022.

    Google Scholar 

  84. [84]

    Santra, S.; Kaittanis, C.; Grimm, J.; Perez, J. M. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009, 5, 1862–1868.

    Google Scholar 

  85. [85]

    Das, M.; Mishra, D.; Dhak, P.; Gupta, S.; Maiti, T. K.; Basak, A.; Pramanik, P. Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 2009, 5, 2883–2893.

    Google Scholar 

  86. [86]

    Hilger, I.; Frühauf, K.; Andrä, W.; Hiergeist, R.; Hergt, R.; Kaiser, W. A. Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad. Radiol. 2002, 9, 198–202.

    Google Scholar 

  87. [87]

    Rupp, R.; Rosenthal, S. L.; Stanberry, L. R. Vivagel™ (SPL7013 gel): A candidate dendrimer-microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007, 2, 561–566.

    Google Scholar 

  88. [88]

    Thomas, T. P.; Shukla, R.; Kotlyar, A.; Kukowska-Latallo, J.; Baker, J. R. Dendrimer based tumor cell targeting of fibroblast growth factor-1. Bioorg. Med. Chem. Lett. 2010, 20, 700–703.

    Google Scholar 

  89. [89]

    Padilla De Jesús, O. L.; Ihre, H. R.; Gagne, L.; Fréchet, J. M.; Szoka, F. C. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjugate Chem. 2002, 13, 453–461.

    Google Scholar 

  90. [90]

    Lee, C. C.; Gillies, E. R.; Fox, M. E.; Guillaudeu, S. J.; Fréchet, J. M.; Dy, E. E.; Szoka, F. C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA 2006, 103, 16649–16654.

    Google Scholar 

  91. [91]

    Guillaudeu, S. J.; Fox, M. E.; Haidar, Y. M.; Dy, E. E.; Szoka, F. C.; Fréchet, J. M. PEGylated dendrimers with core functionality for biological applications. Bioconjugate Chem. 2008, 19, 461–469.

    Google Scholar 

  92. [92]

    Wiener, E. C.; Brechbiel, M. W.; Brothers, H.; Magin, R. L.; Gansow, O. A.; Tomalia, D. A.; Lauterbur, P. C. Dendrimer-based metal-chelates: A new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 1994, 31, 1–8.

    Google Scholar 

  93. [93]

    Konda, S. D.; Aref, M.; Wang, S.; Brechbiel, M.; Wiener, E. C. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magn. Reson. Mater. Phys. Biol. Med. 2001, 12, 104–113.

    Google Scholar 

  94. [94]

    Singh, P.; Gupta, U.; Asthana, A.; Jain, N. K. Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem. 2008, 19, 2239–2252.

    Google Scholar 

  95. [95]

    Lee, C. C.; MacKay, J. A.; Fréchet, J. M.; Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 2005, 23, 1517–1526.

    Google Scholar 

  96. [96]

    Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloid Surf. B-Biointerfaces 2013, 108, 255–259.

    Google Scholar 

  97. [97]

    Mohan, S.; Oluwafemi, O. S.; George, S. C.; Jayachandran, V. P.; Lewu, F. B.; Songca, S.; Kalarikkai, N.; Thomas, S. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydr. Polym. 2014, 106, 469–474.

    Google Scholar 

  98. [98]

    MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloid Surf. B-Biointerfaces 2011, 85, 360–365.

    Google Scholar 

  99. [99]

    Ankanna, S.; Prasad, T. N. V. K. V.; Elumalai, E. K.; Savithramma, N. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig. J. Nanomater. Biostruct. 2010, 5, 369–372.

    Google Scholar 

  100. [100]

    Durán, N.; Marcato, P. D.; De Souza, G. I. H.; Alves, O. L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208.

    Google Scholar 

  101. [101]

    Huang, H. Z.; Yang, X. R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004, 339, 2627–2631.

    Google Scholar 

  102. [102]

    Jacob, S. J. P.; Finub, J.; Narayanan, A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloid Surf. B-Biointerfaces 2011, 91, 212–214.

    Google Scholar 

  103. [103]

    Kaler, A.; Nankar, R.; Bhattacharyya, M. S.; Banerjee, U. C. Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii. J Bionanosci. 2011, 5, 53–58.

    Google Scholar 

  104. [104]

    Mittal, A. K.; Bhaumik, J.; Kumar, S.; Banerjee, U. C. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci. 2014, 415, 39–47.

    Google Scholar 

  105. [105]

    Mittal, A. K.; Kaler, A.; Banerjee, U. C. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomed. Eng. 2012, 4, 118–124.

    Google Scholar 

  106. [106]

    Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S. A.; Michailidis, N. Green synthesis and characterization of silver nanoparticles produced using Arbiutus Unedo leaf extract. Mater. Lett. 2012, 76, 18–20.

    Google Scholar 

  107. [107]

    Njagi, E. C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H. M.; Collins, J. B.; Hoag, G. E.; Suib, S. L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 2011, 27, 264–271.

    Google Scholar 

  108. [108]

    Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.

    Google Scholar 

  109. [109]

    Safaepour, M.; Shahverdi, A. R.; Shahverdi, H. R.; Khorramizadeh, M. R.; Gohari, A. R. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma-Wehi 164. Avicenna J. Med. Biotechnol. 2009, 1, 111–115.

    Google Scholar 

  110. [110]

    Parida, U. K.; Bindhani, B. K.; Nayak, P. Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J. Nano Sci. Eng. 2011, 1, 93–98.

    Google Scholar 

  111. [111]

    Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev. 2012, 65, 663–676.

    Google Scholar 

  112. [112]

    Zhao, T. T.; Yu, K.; Li, L.; Zhang, T. S.; Guan, Z. P.; Gao, N. Y.; Yuan, P. Y.; Li, S.; Yao, S. Q.; Xu, Q. H. et al. Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two photon imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2014, 6, 2700–2708.

    Google Scholar 

  113. [113]

    Ghodake, G.; Deshpande, N.; Lee, Y. P.; Jin, E. S. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloid Surf. B-Biointerfaces 2010, 75, 584–589.

    Google Scholar 

  114. [114]

    Han, G.; Ghosh, P.; Rotello, V. M. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2007, 2, 113–123.

    Google Scholar 

  115. [115]

    Kumar, V. G.; Gokavarapu, S. D.; Rajeswari, A.; Dhas, T. S.; Karthick, V.; Kapadia, Z.; Shrestha, T.; Barathy, I. A.; Roy, A.; Sinha, S. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloid Surf. B-Biointerfaces 2011, 87, 159–163.

    Google Scholar 

  116. [116]

    Liu, Q. J.; Liu, H. F.; Yuan, Z. L.; Wei, D. W.; Ye, Y. Z. Evaluation of antioxidant activity of chrysanthemum extracts and tea beverages by gold nanoparticles-based assay. Colloid Surf. B-Biointerfaces 2012, 92, 348–352.

    Google Scholar 

  117. [117]

    Marshall, A. T.; Haverkamp, R. G.; Davies, C. E.; Parsons, J. G.; Gardea-Torresdey, J. L.; van Agterveld, D. Accumulation of gold nanoparticles in Brassic juncea. Int. J. Phytoremed. 2007, 9, 197–206.

    Google Scholar 

  118. [118]

    Narayanan, K. B.; Sakthivel, N. Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater. Charact. 2010, 61, 1232–1238.

    Google Scholar 

  119. [119]

    Raghunandan, D.; Basavaraja, S.; Mahesh, B.; Balaji, S.; Manjunath, S.; Venkataraman, A. Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnol. 2009, 5, 34–41.

    Google Scholar 

  120. [120]

    Singaravelu, G.; Arockiamary, J. S.; Kumar, V. G.; Govindaraju, K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf. B-Biointerfaces 2007, 57, 97–101.

    Google Scholar 

  121. [121]

    Ankamwar, B. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. Eur. J. Chem. 2010, 7, 1334–1339.

    Google Scholar 

  122. [122]

    Arulkumar, S.; Sabesan, M. Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int. Res. Pharm. Sci. 2010, 1, 417–420.

    Google Scholar 

  123. [123]

    Castro, L.; Luisa Blázquez, M.; Muñoz, J. A.; González, F.; García-Balboa, C.; Ballester, A. Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem. 2011, 46, 1076–1082.

    Google Scholar 

  124. [124]

    Bahram, M.; Hoseinzadeh, F.; Farhadi, K.; Saadat, M.; Najafi-Moghaddam, P.; Afkhami, A. Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloid. Surface A 2014, 441, 517–524.

    Google Scholar 

  125. [125]

    Ferreira, E. B.; Gomes, J. F.; Tremiliosi-Filho, G.; Gasparotto, L. H. S. One-pot eco-friendly synthesis of gold nanoparticles by glycerol in alkaline medium: Role of synthesis parameters on the nanoparticles characteristics. Mater. Res. Bull. 2014, 55, 131–136.

    Google Scholar 

  126. [126]

    Singh, V.; Khullar, P.; Dave, P. N.; Kaura, A.; Bakshi, M. S.; Kaur, G. pH and thermo-responsive tetronic micelles for the synthesis of gold nanoparticles: Effect of physiochemical aspects of tetronics. Phys. Chem. Chem. Phys. 2014, 16, 4728–4739.

    Google Scholar 

  127. [127]

    Medina, C.; Santos-Martinez, M. J.; Radomski, A.; Corrigan, O. I.; Radomski, M. W. Nanoparticles: Pharmacological and toxicological significance. Brit. J. Pharmacol. 2007, 150, 552–558.

    Google Scholar 

  128. [128]

    Adiseshaiah, P. P.; Hall, J. B.; McNeil, S. E. Nanomaterial standards for efficacy and toxicity assessment. WI RES. Nanomed. Nanobi. 2010, 2, 99–112.

    Google Scholar 

  129. [129]

    Tinkle, S. S. Maximizing safe design of engineered nanomaterials: The NIH and NIEHS research perspective. WIRES. Nanomed. Nanobio. 2010, 2, 88–98.

    Google Scholar 

  130. [130]

    Aime, S.; Castelli, D. D.; Crich, S. G.; Gianolio, E.; Terreno, E. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc. Chem. Res. 2009, 42, 822–831.

    Google Scholar 

  131. [131]

    Lin, M. M.; Kim, D. K.; El Haj, A. J.; Dobson, J. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE T. Nanobiosci. 2008, 7, 298–305.

    Google Scholar 

  132. [132]

    Lin, W. B.; Hyeon, T.; Lanza, G. M.; Zhang, M. Q.; Meade, T. J. Magnetic nanoparticles for early detection of cancer by magnetic resonance imaging. MRS Bull. 2009, 34, 441–448.

    Google Scholar 

  133. [133]

    Hamoudeh, M.; Kamleh, M. A.; Diab, R.; Fessi, H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Deliver Rev. 2008, 60, 1329–1346.

    Google Scholar 

  134. [134]

    Dancey, G.; Begent, R. H.; Meyer, T. Imaging in targeted delivery of therapy to cancer. Target. Oncol. 2009, 4, 201–217.

    Google Scholar 

  135. [135]

    Ting, G.; Chang, C. H.; Wang, H. E. Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. Anticancer Res. 2009, 29, 4107–4118.

    Google Scholar 

  136. [136]

    Xing, Y.; Rao, J. H. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark. 2008, 4, 307–319.

    Google Scholar 

  137. [137]

    Santra, S.; Dutta, D.; Walter, G. A.; Moudgil, B. M. Fluorescent nanoparticle probes for cancer imaging. Technol. Cancer Res. T. 2005, 4, 593–602.

    Google Scholar 

  138. [138]

    Jiang, S.; Gnanasammandhan, M. K.; Zhang, Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface 2010, 7, 3–18.

    Google Scholar 

  139. [139]

    Dayton, P. A.; Zhao, S.; Bloch, S.H.; Schumann, P.; Penrose, K.; Matsunaga, T. O.; Zutshi, R.; Doinikov, A.; Ferrara, K. M. Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol. Imaging 2006, 5, 160–174.

    Google Scholar 

  140. [140]

    Rapoport, N.; Gao, Z. G.; Kennedy, A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J. Natl. Cancer I. 2007, 99, 1095–1106.

    Google Scholar 

  141. [141]

    Wang, K.; Wang, K.; Li, W.; Huang, T.; Li, R.; Wang, D. Characterizing breast cancer xenograft epidermal growth factor receptor expression by using nearinfrared optical imaging. Acta Radiol. 2009, 50, 1095–1103.

    Google Scholar 

  142. [142]

    Kelly, K. A.; Setlur, S. R.; Ross, R.; Anbazhagan, R.; Waterman, P.; Rubin, M. A.; Weissleder, R. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res. 2008, 68, 2286–2291.

    Google Scholar 

  143. [143]

    Chen, T. J.; Cheng, T. H.; Chen, C. Y.; Hsu, S. C.; Cheng, T. L.; Liu, G. C.; Wang, Y. M. Targeted herceptine-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J. Biol. Inorg. Chem. 2009, 14, 253–260.

    Google Scholar 

  144. [144]

    Demos, S. M.; Onyuksel, H.; Gilbert, J.; Roth, S. I.; Kane, B.; Jungblut, P.; Pinto, J. V.; Mcpherson, D. D.; Klegerman, M. E. In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement. J. Pharm. Sci. 1997, 86, 167–171

    Google Scholar 

  145. [145]

    Zalutsky, M. R.; Reardon, D. A.; Pozzi, O. R.; Vaidyanathan, G.; Bigner, D. D. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl. Med. Biol. 2007, 34, 779–785.

    Google Scholar 

  146. [146]

    Beer, A. J.; Schwaiger, M. Imaging of integrin alphavbeta3 expression. Cancer Metast. Rev. 2008, 27, 631–644.

    Google Scholar 

  147. [147]

    Bidwell, G. L.; Fokt, I.; Priebe, W.; Raucher, D. Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem. Pharmacol. 2007, 73, 620–631.

    Google Scholar 

  148. [148]

    Kobayashi, H.; Sato, N.; Saga, T.; Nakamoto, Y.; Ishimori, T.; Toyama, S.; Togashi, K.; Konishi, J.; Brechbiel, M. W. Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur. J. Nucl. Med. 2000, 27, 1334–1339.

    Google Scholar 

  149. [149]

    Kobayashi, H.; Wu, C. C.; Kim, M. K.; Paik, C. H.; Carrasquillo, J. A.; Brechbiel, M. W. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug. Chem. 1999, 10, 103–111.

    Google Scholar 

  150. [150]

    Cheng, Z.; Wu, Y.; Xiong, Z.; Gambhir, S. S.; Chen, X. Nearinfrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug. Chem. 2005, 16, 1433–1441.

    Google Scholar 

  151. [151]

    Ellington, A. D.; Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822.

    Google Scholar 

  152. [152]

    Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510.

    Google Scholar 

  153. [153]

    Farokhzad, O. C.; Karp, J. M.; Langer, R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. 2006, 3, 311–324.

    Google Scholar 

  154. [154]

    Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Wang, A. Z.; Langer, R.; Farokhzad, O. C. Nanotechnology and aptamers: Applications in drug delivery. Trends Biotechnol. 2008, 26, 442–449.

    Google Scholar 

  155. [155]

    Guo, K. T.; Paul, A.; Schichor, C.; Ziemer, G.; Wendel, H. P. CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci. 2008, 9, 668–678.

    Google Scholar 

  156. [156]

    Pala, K.; Serwotka, A.; Jeleń, F.; Jakimowicz, P.; Otlewski, J. Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int. J. Nanomed. 2014, 9, 67–76.

    Google Scholar 

  157. [157]

    Choi, S. K.; Thomas, T.; Li, M. H.; Kotlyar, A.; Desai, A.; Baker, J. R. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem. Commun. 2010, 46, 2632–2634.

    Google Scholar 

  158. [158]

    Kularatne, S. A.; Low, P. S. Targeting of nanoparticles: Folate receptor. Methods Mol. Biol. 2010, 624, 249–265.

    Google Scholar 

  159. [159]

    Low, P. S.; Kularatne, S. A. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 2009, 13, 256–262.

    Google Scholar 

  160. [160]

    Zhang, H. L.; Ma, Y.; Sun, X. L. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med. Res. Rev. 2010, 30, 270–289.

    Google Scholar 

  161. [161]

    Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yeh, C. S. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. 2009, 4853–4855.

    Google Scholar 

  162. [162]

    Záruba, K.; Králová, J.; Rezanka, P.; Poucková, P.; Veverková, L.; Král, V. Modified porphyrin-brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Org. Biomol. Chem. 2010, 8, 3202–3206.

    Google Scholar 

  163. [163]

    Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.

    Google Scholar 

  164. [164]

    Jang, B.; Choi, Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics 2012, 2, 190–197.

    Google Scholar 

  165. [165]

    Geng, J. L.; Li, K.; Pu, K. Y.; Ding, D.; Liu, B. Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 2012, 8, 2421–2429.

    Google Scholar 

  166. [166]

    Kuo, W. S.; Chang, Y. T.; Cho, K. C.; Chiu, K. C.; Lien, C. H.; Yeh, C. S.; Chen, S. J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012, 33, 3270–3278.

    Google Scholar 

  167. [167]

    Obaid, G.; Chambrier, I.; Cook, M. J.; Russell, D. A. Targeting the oncofetal Thomsen-Friedenreich disaccharide using jacalin-PEG phthalocyanine gold nanoparticles for photodynamic cancer therapy. Angew. Chem. Int. Ed. 2012, 51, 6158–6162.

    Google Scholar 

  168. [168]

    Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

    Google Scholar 

  169. [169]

    Nishiyama, N.; Morimoto, Y.; Jang, W. D.; Kataoka, K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv. Drug Deliv. Rev. 2009, 61, 327–338.

    Google Scholar 

  170. [170]

    Muehlmann, L. A.; Joanitti, G. A.; Silva, J. R.; Longo, J. P. F.; Azevedo, R. B. Liposomal photosensitizers: Potential platforms for anticancer photodynamic therapy. Braz. J. Med. Biol. Res. 2011, 44, 729–737.

    Google Scholar 

  171. [171]

    Klajnert, B.; Rozanek, M.; Bryszewska, M. Dendrimers in photodynamic therapy. Curr. Med. Chem. 2012, 19, 4903–4912.

    Google Scholar 

  172. [172]

    Chen, C T.; Chen, C. P.; Yang, J. C.; Tsai, T. Liposome-encapsulated photosensitizers against bacteria. Recent Pat. Anti-Infect. Drug Discov. 2013, 8, 100–107.

    Google Scholar 

  173. [173]

    Skupin-Mrugalska, P.; Piskorz, J.; Goslinski, T.; Mielcarek, J.; Konopka, K.; Duzgunes, N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov. Today 2013, 18, 776–784.

    Google Scholar 

  174. [174]

    Paszko, E.; Ehrhardt, C.; Senge, M. O.; Kelleher, D. P.; Reynolds, J. V. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 2011, 8, 14–29.

    Google Scholar 

  175. [175]

    Menon, J. U.; Jadeja, P.; Tambe, P.; Vu, K.; Yuan, B. H.; Nguyen, K. T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 2013, 3, 152–166.

    Google Scholar 

  176. [176]

    Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: Potential cancer theranostics. J. Mater. Chem. 2009, 19, 1252–1257.

    Google Scholar 

  177. [177]

    He, X. X.; Wu, X.; Wang, K. M.; Shi, B. H.; Hai, L. Methylene blue-encapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomaterials 2009, 30, 5601–5609.

    Google Scholar 

  178. [178]

    Uppal, A.; Jain, B.; Gupta, P. K.; Das, K. Photodynamic action of Rose Bengal silica nanoparticle complex on breast and oral cancer cell lines. Photochem. Photobiol. 2011, 87, 1146–1151.

    Google Scholar 

  179. [179]

    Qian, J.; Wang, D.; Cai, F. H.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33, 4851–4860.

    Google Scholar 

  180. [180]

    Wang, S. Y.; Kim, G.; Lee, Y. E. K.; Hah, H. J.; Ethirajan, M.; Pandey, R. K; Kopelman, R. Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics-A “see and treat” strategy. ACS Nano 2012, 6, 6843–6851.

    Google Scholar 

  181. [181]

    Tong, R.; Kohane, D. S. Shedding light on nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 638–662.

    Google Scholar 

  182. [182]

    McCarthy, J. R.; Korngold, E.; Weissleder, R.; Jaffer, F. A. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 2010, 6, 2041–2049.

    Google Scholar 

  183. [183]

    Hilderbrand, S. A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79.

    Google Scholar 

  184. [184]

    Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

    Google Scholar 

  185. [185]

    Xiong, R. H.; Soenen, S. J.; Braeckmans, K.; Skirtach, A. G. Towards theranostic multicompartment microcapsules: In-situ diagnostics and laser-induced treatment. Theranostics 2013, 3, 141–151.

    Google Scholar 

  186. [186]

    Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079.

    Google Scholar 

  187. [187]

    Chen, X. Y., Ed.; Nanoplatform-Based Molecular Imaging; Wiley: Hoboken, New Jersey, 2011; pp 848.

    Google Scholar 

  188. [188]

    Jokerst, J. V.; Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060.

    Google Scholar 

  189. [189]

    Longmire, M.; Choyke, P. L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (Lond.) 2008, 3, 703–717.

    Google Scholar 

  190. [190]

    Sibani, S. A.; McCarron, P. A.; Woolfson, A. D.; Donnelly, R. F. Photosensitiser delivery for photodynamic therapy. Part 2: Systemic carrier platforms. Expert Opin. Drug. Deliv. 2008, 5, 1241–1254.

    Google Scholar 

  191. [191]

    Chen, H. W.; Chen, J. C.; Chen, N. S.; Huang, J. L.; Wang, J. D.; Huang, M. D. Applications of peptide conjugated photosensitizers in photodynamic therapy. Prog. Biochem. Biophys. 2009, 36, 1106–1113.

    Google Scholar 

  192. [192]

    Abdelghany, S. M.; Schmid, D.; Deacon, J.; Jaworski, J.; Fay, F.; McLaughlin, K. M.; Gormley, J. et al. Enhanced anti-tumor activity of the photosensitizer meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP) through encapsulation in antibody targeted chitosan/alginate nanoparticles. Biomacromol. 2013, 14, 302–310.

    Google Scholar 

  193. [193]

    Senge, M. O.; Radomski, M. W. Platelets, photosensitizers, and PDT. Photodiagnosis. Photodyn. Ther. 2012, 10, 1–16.

    Google Scholar 

  194. [194]

    Zhang, Y.; Lovell, J. F. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2012, 2, 905–915.

    Google Scholar 

  195. [195]

    Mroz, P.; Bhaumik, J.; Dogutan, D. K.; Aly, Z.; Kamal. Z.; Khalid, L.; Kee, H. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. et al. Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge; central metal and hydroxyl radical production. Cancer Lett. 2009, 282, 63–76.

    Google Scholar 

  196. [196]

    Nann, T. Nanoparticles in photodynamic therapy. Nano Biomed. Eng. 2011, 3, 137–143.

    Google Scholar 

  197. [197]

    Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

    Google Scholar 

  198. [198]

    Sternberg, E. D.; Dolphin, D.; Bruckner, C. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 1998, 54, 4151–4202.

    Google Scholar 

  199. [199]

    Moreira, L. M.; dos Santos, F. V.; Lyon, J. P.; Maftoum-Costa, M.; Pacheco-Soares, C.; da Silva, N. S. Photodynamic therapy: Porphyrins and phthalocyanines as photosensitizers. Aust. J. Chem. 2008, 61, 741–754.

    Google Scholar 

  200. [200]

    Josefsen, L. B.; Boyle, R. W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy: Imaging and theranostics. Theranostics 2012, 2, 916–966.

    Google Scholar 

  201. [201]

    Matsubara, T.; Kusuzaki, K.; Matsumine, A.; Satonaka, H.; Shintani, K.; Nakamura, T.; Uchida, A. Methylene blue in place of acridine orange as a photosensitizer in photodynamic therapy of osteosarcoma. In Vivo 2008, 22, 297–303.

    Google Scholar 

  202. [202]

    Ding, L. L.; Luan, L. Q.; Shi, J. W.; Liu, W. Phthalocyanine based photosensitizers for photodynamic therapy. Chin. J. Inorg. Chem. 2013, 29, 1591–1598.

    Google Scholar 

  203. [203]

    Giribabu, L.; Sudhakar, K.; Velkannan, V. Phthalocyanines: Potential alternative sensitizers to Ru(II) polypyridyl complexes for dye-sensitized solar cells. Curr. Sci. 2012, 102, 991–1000.

    Google Scholar 

  204. [204]

    Calin, M. A.; Diaconeasa, A.; Savastru, D.; Tautan, M. Photosensitizers and light sources for photodynamic therapy of the Bowen’s disease. Arch. Dermatol. Res. 2011, 303, 145–151.

    Google Scholar 

  205. [205]

    Awuah, S. G.; You, Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv. 2012, 2, 11169–11183.

    Google Scholar 

  206. [206]

    Kiesslich, T.; Gollmer, A.; Maisch, T.; Berneburg, M.; Plaetzer, K. A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms. Biomed. Res. Int. 2013, 840417.

    Google Scholar 

  207. [207]

    Wang, L. Y.; Cao, D. R. Research advances of porphyrin photosensitizers in photodynamic therapy. Chin. J. Org. Chem. 2012, 32, 2248–2264.

    Google Scholar 

  208. [208]

    Garland, M. J.; Cassidy, C. M.; Woolfson, D.; Donnelly, R. F. Designing photosensitizers for photodynamic therapy: Strategies, challenges and promising developments. Future Med. Chem. 2009, 1, 667–691.

    Google Scholar 

  209. [209]

    Tsai, T.; Yang, Y. T.; Wang, T. H.; Chien, H. F.; Chen, C. T. Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Laser. Surg. Med. 2009, 41, 316–322.

    Google Scholar 

  210. [210]

    Liu, T. W. B.; Chen, J.; Burgess, L.; Cao, W. G.; Shi, J. Y.; Wilson, B. C.; Zheng, G. Multimodal bacteriochlorophyll theranostic agent. Theranostics 2011, 1, 354–362.

    Google Scholar 

  211. [211]

    Hah, H. J.; Kim, G.; Lee, Y. E. K.; Orringer, D. A.; Sagher, O.; Philbert, M. A.; Kopelman, R. Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol. Biosci. 2011, 11, 90–99.

    Google Scholar 

  212. [212]

    Shi, J. Y.; Liu, T. W. B.; Chen, J.; Green, D.; Jaffray, D.; Wilson, B. C.; Wang, F.; Zheng, G. Transforming a targeted porphyrin theranostic agent into a PET imaging probe for cancer. Theranostics 2011, 1, 363–370.

    Google Scholar 

  213. [213]

    Lim, E. J.; Oak, C. H.; Heo, J.; Kim, Y. H. Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells. Oncol. Rep. 2013, 30, 856–862.

    Google Scholar 

  214. [214]

    Narayan, K. M. V.; Ali, M. K.; Koplan, J. P. Global noncommunicable diseases-where worlds meet. N. Engl. J. Med. 2011, 363, 1196–1198.

    Google Scholar 

  215. [215]

    Cao, W. G.; Ng, K. K.; Corbin, I.; Zhang, Z. H.; Ding, L. L.; Chen, J.; Zheng, G. Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging. Bioconjg. Chem. 2009, 20, 2023–2031.

    Google Scholar 

  216. [216]

    Jeong, H.; Huh, M.; Lee, S. J.; Koo, H.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 2011, 1, 230–239.

    Google Scholar 

  217. [217]

    Yoon, H. Y.; Koo, H.; Choi, K. Y.; Lee, S. J.; Kim, K.; Kwon, I. C.; Leary, J. F.; Park, K.; Yu, S. H.; Park, J. H. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012, 33, 3980–3989.

    Google Scholar 

  218. [218]

    Huang, P.; Li, Z. M.; Lin, J.; Yang, D. P.; Gao, G.; Xu, C.; Bao, L.; Zhang, C. L.; Wang, K.; Song, H. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011, 32, 3447–3458.

    Google Scholar 

  219. [219]

    Shan, J. N.; Budijono, S. J.; Hu, G. H.; Yao, N.; Kang, Y. B.; Ju, Y. G.; Prud’homme, R. K. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv. Funct. Mater. 2011, 21, 2488–2495.

    Google Scholar 

  220. [220]

    Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011, 32, 6145–6154.

    Google Scholar 

  221. [221]

    Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829.

    Google Scholar 

  222. [222]

    Ding, H. Y.; Sumer, B. D.; Kessinger, C. W.; Dong, Y.; Huang, G.; Boothman, D. A.; Gao, J. M. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. J. Control. Release. 2011, 151, 271–277.

    Google Scholar 

  223. [223]

    Yin, M. L.; Li, Z. H.; Liu, Z.; Ren, J. S.; Yang, X. J.; Qu, X. G. Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem. Commun. 2012, 48, 6556–6558.

    Google Scholar 

  224. [224]

    Mroz, P.; Yaroslavsky, A.; Kharkwal, G.B.; Hamblin, M. R. Cell death pathways in photodynamic therapy of cancer. Cancers 2011, 3, 2516–2539.

    Google Scholar 

  225. [225]

    Maisch, T.; Spannberger, F.; Regensburger, J.; Felgentrager, A.; Baumler, W. Fast and effective: Intense pulse light photodynamic inactivation of bacteria. J. Ind. Microbiol. Biotechnol. 2012, 39, 1013–1021.

    Google Scholar 

  226. [226]

    Shrestha, A; Kishen, A. Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem. Photobiol. 2012, 88, 577–583.

    Google Scholar 

  227. [227]

    St Denis, T. G.; Dai, T. H.; Izikson, L.; Astrakas, C.; Anderson, R. R.; Hamblin, M. R.; Tegos, G. P. All you need is light: Antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2011, 2, 509–520.

    Google Scholar 

  228. [228]

    Carvalho, C. M. B.; Alves, E.; Costa, L.; Tome, J. P. C.; Faustino, M. A. F.; Neves, M. G. P. M. S.; Tome, A. C.; Cavaleiro, J. A. S.; Almeida, A.; Cunha, A. Functional cationic nanomagnet-porphyrin hybrids for the photoinactivation of microorganisms. ACS Nano 2010, 4, 7133–7140.

    Google Scholar 

  229. [229]

    Mulder, W. J. M.; Fayad, Z. A. Nanomedicine captures cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 801–802.

    Google Scholar 

  230. [230]

    Godin, B.; Sakamoto, J. H.; Serda, R. E.; Grattoni, A.; Bouamrani, A.; Ferrari, M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci. 2010, 31, 199–205.

    Google Scholar 

  231. [231]

    Goonewardena, S. N. Approaching the asymptote: Obstacles and opportunities for nanomedicine in cardiovascular disease. Curr. Atheroscler. Rep. 2012, 14, 247–253.

    Google Scholar 

  232. [232]

    Lee, S. J.; Koo, H.; Jeong, H.; Huh, M. S.; Choi, Y.; Jeong, S. Y.; Byun, Y.; Choi, K.; Kim, K.; Kwon, I. C. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J. Control. Release. 2011, 152, 21–29.

    Google Scholar 

  233. [233]

    Marotta, D. E.; Cao, W. G.; Wileyto, E. P.; Li, H.; Corbin, I.; Rickter, E.; Glickson, J. D.; Chance, B.; Zheng, G.; Busch, T. M. Evaluation of bacteriochlorophyll-reconstituted low-density lipoprotein nanoparticles for photodynamic therapy efficacy in vivo. Nanomedicine (Lond.) 2011, 6, 475–487.

    Google Scholar 

  234. [234]

    Ozgur, A.; Lambrecht, F. Y.; Ocakoglu, K.; Gunduz, C.; Yucebas, M. Synthesis and biological evaluation of radiolabeled photosensitizer linked bovine serum albumin nanoparticles as a tumor imaging agent. Int. J. Pharm. 2012, 422, 472–478.

    Google Scholar 

  235. [235]

    Rahmanzadeh, R.; Rai, P.; Celli, J. P.; Rizvi, I.; Baron-Lühr, B.; Gerdes, J.; Hasan, T. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer. Cancer Res. 2010, 70, 9234–9242.

    Google Scholar 

  236. [236]

    Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1–9.

    Google Scholar 

  237. [237]

    Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 2006, 90, 619–627.

    Google Scholar 

  238. [238]

    Wang, C. G.; Irudayaraj, J. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 2010, 6, 283–289.

    Google Scholar 

  239. [239]

    Schwiertz, J.; Wiehe, A.; Gräfe, S.; Gitter, B.; Epple, M. Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bacteria. Biomaterials 2009, 30, 3324–3331.

    Google Scholar 

  240. [240]

    Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 6630–639.

    Google Scholar 

  241. [241]

    Johnson, N. J. J.; van Veggel, F. C. J. M. Sodium lanthanide fluoride core-shell nanocrystals: A general perspective on epitaxial shell growth. Nano Res. 2013, 6, 547–561.

    Google Scholar 

  242. [242]

    Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

    Google Scholar 

  243. [243]

    Wu, L. N.; Cai, X.; Nelson, K.; Xing, W. X.; Xia, J.; Zhang, R. Y.; Stacy, A. J.; Luderer, M.; Lanza, G. M.; Wang, L. V. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res. 2013, 6, 312–325.

    Google Scholar 

  244. [244]

    Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679–694.

    Google Scholar 

  245. [245]

    Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

    Google Scholar 

  246. [246]

    Panfilova, E.; Shirokov, A.; Khlebtsov, B.; Matora, L.; Khlebtsov, N. Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res. 2012, 5, 124–134.

    Google Scholar 

  247. [247]

    Gilroy, K. D.; Sundar, A.; Farzinour, P.; Hughes, R. A.; Neretina, S. Mechanistic study of substrate-based galvanic replacement reactions. Nano Res. 2014, 7, 365–379.

    Google Scholar 

  248. [248]

    Li, J. C.; He, Y.; Sun, W. J.; Luo, Y.; Cai, H. D.; Pan, Y. Q.; Shen, M. W.; Xia, J. D.; Shi, X. Y. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 2014, 35, 3666–3677.

    Google Scholar 

  249. [249]

    Liu, Y.; Li, L. L.; Qi, G. B.; Chen, X. G.; Wang, H. Dynamic disordering of liposomal cocktails and the spatio-temporal favorable release of cargoes to circumvent drug resistance. Biomaterials 2014, 35, 3406–3415.

    Google Scholar 

  250. [250]

    Chen, J. Q.; Liu, H. Y.; Zhao, C. B.; Qin, G. Q.; Xi, G. N.; Li, T.; Wang, X. P.; Chen, T. S. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 2014, 35, 4986–4995.

    Google Scholar 

  251. [251]

    Gao, F. P.; Lin, Y. X.; Li, L. L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J. G.; Li, J. Y.; Wurthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials 2014, 35, 1004–1014.

    Google Scholar 

  252. [252]

    Zha, Z. B.; Wang, J. R; Zhang, S. H.; Wang, S. M.; Qu, E.; Zhang, Y. Y.; Dai, Z. F. Engineering of perfluorooctylbromide polypyrrole nano-microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer. Biomaterials 2014, 35, 287–293.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jayeeta Bhaumik or Uttam Chand Banerjee.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhaumik, J., Mittal, A.K., Banerjee, A. et al. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 8, 1373–1394 (2015). https://doi.org/10.1007/s12274-014-0628-3

Download citation

Keywords

  • phototheranostics
  • photodynamic therapy
  • photosensitizers
  • theranostics
  • nanomedicine