Skip to main content
Log in

Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA·mM−1·cm−2 and a low detection limit of 2.4 μM. Furthermore, the low potential (−0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloysfor electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

    Article  Google Scholar 

  2. Son, J.; Cho, S.; Lee, C.; Lee, Y.; Shim, J. H. Spongelikenanoporous Pd and Pd/Au structures: Facile synthesis and enhanced electrocatalyticactivity. Langmuir 2014, 30, 3579–3588.

    Article  Google Scholar 

  3. Kim, M. I.; Ye, Y.; Won, B. Y.; Shin, S.; Lee, J.; Park, H. G. A highly efficient electrochemical biosensingplatform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868–2875.

    Article  Google Scholar 

  4. Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58.

    Article  Google Scholar 

  5. Chen, X.; Zhang, J. J.; Xuan, J.; Zhu, J. J. Myoglobin/gold nanoparticles/carbon spheres 3-D architecture for the fabrication of a novel biosensor. Nano Res. 2009, 2, 210–219.

    Article  Google Scholar 

  6. Wu, P.; Cai, Z. W.; Chen, J.; Zhang, H.; Cai, C. X. Electrochemical measurement of the flux of hydrogen peroxide releasing from RAW 264.7 macrophage cells based on enzyme-attapulgite clay nanohybrids. Biosens. Bioelectron. 2011, 26, 4012–4017.

    Article  Google Scholar 

  7. Zhai, D. Y.; Liu, B. R.; Shi, Y.; Pan, L. J.; Wang, Y. Q.; Li, W. B.; Zhang, R.; Yu, G. H. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540–3546.

    Article  Google Scholar 

  8. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  9. Chen, A. C.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438.

    Article  Google Scholar 

  10. Hsu, M. S.; Chen, Y. L.; Lee, C. Y.; Chiu, H. T. Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl. Mater. Interfaces. 2012, 4, 5570–5575.

    Article  Google Scholar 

  11. Zhao, Y. T.; Zhang, W. Y.; Lin, Y. H.; Du, D. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 2013, 5, 1121–1126.

    Article  Google Scholar 

  12. Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272–282.

    Article  Google Scholar 

  13. Kong, L. J.; Ren, Z. Y.; Du, S. C.; Wu, J.; Fu, H. G. Co2Nx/nitrogen-doped reduced graphene oxide for enzymeless glucose detection. Chem. Commun. 2014, 50, 4921–4923.

    Article  Google Scholar 

  14. Liu, J.; Zhang, W.; Zhang, H. L.; Yang, Z. Y.; Li, T. R.; Wang, B. D.; Huo, X.; Wang, R.; Chen, H. T. A multifunctional nanoprobe based on Au-Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 2013, 49, 4938–4940.

    Article  Google Scholar 

  15. Sun, X. L.; Guo, S. J.; Liu, Y.; Sun, S. H. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett. 2012, 12, 4859–4863.

    Article  Google Scholar 

  16. Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified inalkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.

    Article  Google Scholar 

  17. Wan, P. B.; Yin, S. Y.; Liu, L. L.; Li, Y. G.; Liu, Y. J.; Wang, X. T.; Leow, W. R.; Ma, B.; Chen, X. D. Graphenecarrier for magneto-controllable bioelectrocatalysis. Small 2014, 10, 647–652.

    Article  Google Scholar 

  18. Liu, L.; Wang, N.; Cao, X.; Guo, L. Direct electrochemistry of cytochrome c at a hierarchically nanostructured TiO2 quantum electrode. Nano Res. 2010, 3, 369–378.

    Article  Google Scholar 

  19. Zhang, G. Q.; Xia, B. Y.; Wang, X.; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheetsas a methanol-tolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408–2412.

    Article  Google Scholar 

  20. Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymelessglucose detection. ACS Nano 2012, 6, 3206–3213.

    Article  Google Scholar 

  21. Wang, X. W.; Dong, X. C.; Wen, Y. Q.; Li, C. M.; Xiong, Q. H.; Chen, P. A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chem. Commun. 2012, 48, 6490–6492.

    Article  Google Scholar 

  22. Li, S. S.; Cong, H. P.; Wang, P.; Yu, S. H. Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity. Nanoscale 2014, 6, 7534–7541.

    Article  Google Scholar 

  23. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  24. Niu, Z. Q.; Liu, L. L.; Zhang, L.; Shao, Q.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. A universal strategy to prepare functional porous graphenehybrid architectures. Adv. Mater. 2014, 26, 3681–3687.

    Article  Google Scholar 

  25. Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22, 861–871.

    Article  Google Scholar 

  26. Cui, C. H.; Yu, J. W.; Li, H. H.; Gao, M. R.; Liang, H. W.; Yu, S. H. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes. ACS Nano 2011, 5, 4211–4218.

    Article  Google Scholar 

  27. Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem. Int. Ed. 2014, 53, 4561–4566.

    Article  Google Scholar 

  28. Xie, J. L.; Guo, C. X.; Li, C. M. Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 2014, 7, 2559–2579.

    Article  Google Scholar 

  29. Yin, S. Y.; Wu, Y. L.; Hu, B. H.; Wang, Y.; Cai, P. Q.; Tan, C. K.; Qi, D. P.; Zheng, L. Y.; Leow, W. R.; Tan, N. S. et al. Three-dimensional graphene composite macroscopic structures for capture of cancer cells. Adv. Mater. Interfaces 2014, 1, 1300043.

    Article  Google Scholar 

  30. Yang, Y. Q.; Asiri, A. M.; Tang, Z. W.; Du, D.; Lin, Y. H. Graphene based materials for biomedical applications. Mater. Today 2013, 16, 365–373.

    Article  Google Scholar 

  31. Liu, L. L.; Niu, Z. Q.; Zhang, L.; Chen, X. D. Structural diversity of bulky graphenematerials. Small 2014, 10, 2200–2214.

    Article  Google Scholar 

  32. Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvothermalreduction of chemically exfoliated graphenesheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

    Article  Google Scholar 

  33. Jiang, J.; Li, L. C. Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 2007, 61, 4894–4896.

    Article  Google Scholar 

  34. Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D. Assembly of graphenesheets into hierarchical structures for high-performance energy storage. ACS Nano 2011, 5, 3831–3838.

    Article  Google Scholar 

  35. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphenecomposite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

    Article  Google Scholar 

  36. Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.

    Article  Google Scholar 

  37. Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.

    Article  Google Scholar 

  38. Zhong, Z. Y.; Ng, V.; Luo, J. Z.; Teh, S. P.; Teo, J.; Gedanken, A. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture. Langmuir 2007, 23, 5971–5977.

    Article  Google Scholar 

  39. Heli, H.; Pishahang, J. Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: Synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim. Acta 2014, 123, 518–526.

    Article  Google Scholar 

  40. Tabrizi, M. A.; Lahiji, A. A. S. Self-assembling of Prussian blue nanocubic particles on nanoporous glassy carbon and its use in the electrocatalytic reduction of hydrogen peroxide. J. Iran. Chem. Soc. 2014, 11, 1015–1020.

    Article  Google Scholar 

  41. Xiao, F.; Li, Y. Q.; Zan, X. L.; Liao, K.; Xu, R.; Duan, H. W. Growth of metal-metal oxide nanostructures on freestanding graphenepaper for flexible biosensors. Adv. Funct. Mater. 2012, 22, 2487–2494.

    Article  Google Scholar 

  42. Wu, P.; Qian, Y. D.; Du, P.; Zhang, H.; Cai, C. X. Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J. Mater. Chem. 2012, 22, 6402–6412.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyu Ren or Honggang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Ren, Z., Zheng, N. et al. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 8, 469–480 (2015). https://doi.org/10.1007/s12274-014-0617-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0617-6

Keywords

Navigation