Skip to main content

Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes


We present a theoretical study of new nanostructures based on bilayered graphene with periodically arranged hexagonal holes (bilayered graphene antidots). Our ab initio calculations show that fabrication of hexagonal holes in bigraphene leads to connection of the neighboring edges of the two graphene layers with formation of a hollow carbon nanostructure sheet which displays a wide range of electronic properties (from semiconductor to metallic), depending on the size of the holes and the distance between them. The results were additionally supported by wave packet dynamical transport calculations based on the numerical solution of the time-dependent Schrödinger equation.

This is a preview of subscription content, access via your institution.


  1. [1]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang D; Zhang Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. [2]

    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  Google Scholar 

  3. [3]

    McCann, E.; Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 2013, 76, 056503.

    Article  Google Scholar 

  4. [4]

    McCann, E.; Fal’ko, V. I. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 2006, 96, 086805.

    Article  Google Scholar 

  5. [5]

    Chernozatonskii, L. A.; Sorokin, P. B.; Brüning, J. W. Two-dimensional semiconducting nanostructures based on single graphenesheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 2007, 91, 183103.

    Article  Google Scholar 

  6. [6]

    Chernozatonskii, L. A.; Sorokin, P. B.; Belova, E. É.; Brüning, J.; Fedorov, A. S. Superlatticesconsisting of “lines” of adsorbed hydrogen atom pairs on graphene. JETP Lett. 2007, 85, 77–81.

    Article  Google Scholar 

  7. [7]

    Chernozatonskii, L. A.; Sorokin, P. B. Nanoengineeringstructures on graphenewith adsorbed hydrogen “lines”. J. Phys. Chem. C 2010, 114, 3225–3229.

    Article  Google Scholar 

  8. [8]

    Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

    Article  Google Scholar 

  9. [9]

    Liu, X. F.; Zhang, Z. H.; Guo, W. L. Universal rule on chirality-dependent bandgapsin grapheneantidotlattices. Small 2013, 9, 1405–1410.

    Article  Google Scholar 

  10. [10]

    Pedersen, T. G.; Flindt, C.; Pedersen, J.; Jauho, A.-P.; Mortensen, N. A.; Pedersen, K. Optical properties of grapheneantidotlattices. Phys. Rev. B 2008, 77, 243431.

    Google Scholar 

  11. [11]

    McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.

    Article  Google Scholar 

  12. [12]

    Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographicallyselective nanopatterningof grapheneon SiO2. Nano Res. 2010, 3, 110–116.

    Article  Google Scholar 

  13. [13]

    Dobrik, G.; Nemes-Incze, P.; Tapasztó, L.; Lambin, P.; Biró, L. P. Nanoscalelithography of graphenewith crystallographic orientation control. Physica E 2012, 44, 971–975.

    Article  Google Scholar 

  14. [14]

    Lee, J.-H.; Jang, Y.; Heo, K.; Lee, J.-M.; Choi, S. H.; Joo, W.-J.; Hwang, S. W.; Whang, D. Large-scale fabrication of 2D nanoporousgrapheneusing a thin anodic aluminum oxide etching mask. J. Nanosci.Nanotechnol. 2013, 13, 7401–7405.

    Article  Google Scholar 

  15. [15]

    Zubeltzu, J.; Chuvilin, A.; Corsetti, F.; Zurutuza, A.; Artacho, E. Knock-on damage in bilayer graphene: Indications for a catalytic pathway. Phys. Rev. B 2013, 88, 245407.

    Article  Google Scholar 

  16. [16]

    Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphenenanomesh. Nat. Nanotechnol. 2010, 5, 190–194.

    Article  Google Scholar 

  17. [17]

    Dvorak, M.; Oswald, W.; Wu, Z. G. Bandgapopening by patterning graphene. Sci. Rep. 2013, 3, 2289.

    Article  Google Scholar 

  18. [18]

    Pedersen, T. G.; Flindt, C.; Pedersen, J.; Mortensen, N. A.; Jauho, A.-P.; Pedersen, K. Grapheneantidotlattices: Designed defects and spin qubits. Phys. Rev. Lett. 2008, 100, 136804.

    Article  Google Scholar 

  19. [19]

    Ouyang, F. P.; Peng, S. L.; Liu, Z. F.; Liu, Z. R. Bandgapopening in grapheneantidotlattices: The missing half. ACS Nano 2011, 5, 4023–4030.

    Article  Google Scholar 

  20. [20]

    Fürst, J. A.; Pedersen, J. G.; Flindt, C.; Mortensen, N. A.; Brandbyge, M.; Pedersen, T. G.; Jauho, A.-P. Electronic properties of grapheneantidotlattices. New J. Phys. 2009, 11, 095020.

    Article  Google Scholar 

  21. [21]

    Sinitskii, A.; Tour, J. M. Patterning graphenethrough the self-assembled templates: Toward periodic two-dimensional graphenenanostructures with semiconductor properties. J. Am. Chem. Soc. 2010, 132, 14730–14732.

    Article  Google Scholar 

  22. [22]

    Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforatedgraphenematerials. Nano Lett. 2010, 10, 1125–1131.

    Article  Google Scholar 

  23. [23]

    Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphenelayers. Phys. Rev. Lett. 2009, 102, 015501.

  24. [24]

    Campos-Delgado, J.; Kim, Y. A.; Hayashi, T.; Morelos-Gómez, A.; Hofmann, M.; Muramatsu, H.; Endo, M.; Terrones, H.; Shull, R. D.; Dresselhaus, M. S.; et al. Thermal stability studies of CVD-grown graphenenanoribbons: Defect annealing and loop formation. Chem.Phys.Lett. 2009, 469, 177–182.

    Article  Google Scholar 

  25. [25]

    Algara-Siller, G.; Santana, A.; Onions, R.; Suyetin, M.; Biskupek, J.; Bichoutskaia, E.; Kaiser, U. Electron-beam engineering of single-walled carbon nanotubes from bilayer graphene. Carbon 2013, 65, 80–86.

    Article  Google Scholar 

  26. [26]

    Zhan, D.; Liu, L.; Xu, Y. N.; Ni, Z. H.; Yan, J. X.; Zhao, C.; Shen, Z. X. Low temperature edge dynamics of AB-stacked bilayer graphene: Naturally favored closed zigzag edges. Sci. Rep. 2011, 1, 12.

    Article  Google Scholar 

  27. [27]

    Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The siesta method for abinitioorder-Nmaterials simulation. J. Phys.: Condens. Mat. 2002, 14, 2745–2779.

    Google Scholar 

  28. [28]

    Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  29. [29]

    Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.

    Article  Google Scholar 

  30. [30]

    Garraway, B. M.; Suominen, K.-A. Wave-packet dynamics: New physics and chemistry in femto-time. Rep. Prog. Phys. 1995, 58, 365–419.

    Article  Google Scholar 

  31. [31]

    Vancsó, P.; Márk, G. I.; Lambin, P.; Mayer, A.; Hwang, C.; Biró, L. P. Effect of the disorder in graphenegrain boundaries: Awave packet dynamics study. Appl. Surf. Sci. 2014, 291, 58–63.

    Article  Google Scholar 

  32. [32]

    Mayer, A. Band structure and transport properties of carbon nanotubes using a local pseudopotentialand a transfer-matrix technique. Carbon 2004, 42, 2057–2066.

    Article  Google Scholar 

  33. [33]

    Mayer, A. Transfer-matrix simulations of electronic transport in single-wall and multi-wall carbon nanotubes. Carbon 2005, 43, 717–726.

    Article  Google Scholar 

  34. [34]

    Vancsó, P.; Márk, G. I.; Lambin, P.; Mayer, A.; Kim, Y. S.; Hwang, C.; Biró, L. P. Electronic transport through ordered and disordered graphenegrain boundaries. Carbon 2013, 64, 101–110.

    Article  Google Scholar 

  35. [35]

    Márk, G. I.; Biró, L. P.; Gyulai, J. Simulation of STMimages of three-dimensional surfaces and comparison with experimental data: Carbon nanotubes. Phys. Rev. B 1998, 58, 12645–12648.

    Article  Google Scholar 

  36. [36]

    Márk, G. I.; Vancsó, P.; Hwang, C.; Lambin, P.; Biró, L. P. Anisotropic dynamics of charge carriers in graphene. Phys. Rev. B 2012, 85, 125443.

    Article  Google Scholar 

  37. [37]

    Scuracchio, P.; Dobry, A. Bending mode fluctuations and structural stability of graphenenanoribbons. Phys. Rev. B 2013, 87, 165411.

    Article  Google Scholar 

  38. [38]

    Kit, O. O.; Tallinen, T.; Mahadevan, L.; Timonen, J.; Koskinen, P. Twisting graphenenanoribbonsinto carbon nanotubes. Phys. Rev. B 2012, 85, 085428.

    Article  Google Scholar 

  39. [39]

    Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005, 127, 5990–5995.

    Article  Google Scholar 

  40. [40]

    Timmermans, M. Y.; Estrada, D.; Nasibulin, A. G.; Wood, J. D.; Behnam, A.; Sun, D.-M.; Ohno, Y.; Lyding, J. W.; Hassanien, A.; Pop, E.; et al. Effect of carbon nanotube network morphology on thin film transistor performance. Nano Res. 2012, 5, 307–319.

    Article  Google Scholar 

  41. [41]

    Chernozatonskii, L. A.; Demin, V. A. Nanotube connections in bilayer graphene with elongated holes. In Proceedings of the International Conference in Nanomaterials: Applications and Properties, Alushta, the Crimea, 2013, pp. 03NCNN32-03NCNN34.

    Google Scholar 

  42. [42]

    Chernozatonskii, L. A.; Demin, V. A.; Artyukh, A. A. Bigraphenenanomeshes: Structure, properties, and formation. JETP Lett. 2014, 99, 309–314.

    Article  Google Scholar 

  43. [43]

    Chernozatonskii, L. A. Carbon nanotube connectors and planar jungle gyms. Phys. Lett. A 1992, 172, 173–176.

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Dmitry G. Kvashnin or Leonid A. Chernozatonskii.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kvashnin, D.G., Vancsó, P., Antipina, L.Y. et al. Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes. Nano Res. 8, 1250–1258 (2015).

Download citation


  • gaphene
  • antidots
  • electronic properties
  • DFT