Skip to main content

Microporous bamboo biochar for lithium-sulfur batteries


Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo biochar is activated via a KOH/annealing process that creates a microporous structure, boosts surface area and enhances electronic conductivity. The treated sample is used to encapsulate sulfur to prepare a microporous bamboo carbon-sulfur (BC-S) nanocomposite for use as the cathode for Li-S batteries for the first time. The BC-S nanocomposite with 50 wt.% sulfur content delivers a high initial capacity of 1,295 mA·h/g at a low discharge rate of 160 mA/g and high capacity retention of 550 mA·h/g after 150 cycles at a high discharge rate of 800 mA/g with excellent coulombic efficiency (⩾95%). This suggests that the BC-S nanocomposite could be a promising cathode material for Li-S batteries.

This is a preview of subscription content, access via your institution.


  1. [1]

    Peramunage, D.; Licht, S. A solid sulfur cathode for aqueous batteries. Science 1993, 261, 1029–1032.

    Article  Google Scholar 

  2. [2]

    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  3. [3]

    Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821–9826.

    Article  Google Scholar 

  4. [4]

    Zhang, J.; Xiang, J. Y.; Dong, Z. M.; Liu, Y.; Wu, Y. S.; Xu, C. M.; Du, G. H. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium-sulfur batteries. Electrochim. Acta 2014, 116, 146–151.

    Article  Google Scholar 

  5. [5]

    Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904–5908.

    Article  Google Scholar 

  6. [6]

    Zhao, S. R.; Li, C. M.; Wang, W. K.; Zhang, H.; Gao, M. Y.; Xiong, X.; Wang, A. B.; Yuan, K. G.; Huang, Y. Q.; Wang, F. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries. J.Mater. Chem. A 2013, 1, 3334–3339.

    Article  Google Scholar 

  7. [7]

    Jeddi, K.; Ghaznavi, M.; Chen, P. A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 2769–2772.

    Article  Google Scholar 

  8. [8]

    Lee, J.-H.; Lee, H.-Y.; Oh, S.-M.; Lee, S.-J.; Lee, K.-Y.; Lee, S.-M. Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries. J. Power Sources 2007, 166, 250–254.

    Article  Google Scholar 

  9. [9]

    Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26, 625–631.

    Article  Google Scholar 

  10. [10]

    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nature Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  11. [11]

    Xu, G. L.; Xu, Y. F.; Fang, J. C.; Peng, X. X.; Fu, F.; Huang, L.; Li, J. T.; Sun, S. G. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2013, 5, 10782–10793.

    Article  Google Scholar 

  12. [12]

    He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 2013, 7, 10920–10930.

    Article  Google Scholar 

  13. [13]

    Zhang, W. H.; Qiao, D.; Pan, J. X.; Cao, Y. L.; Yang, H. X.; Ai, X. P. A Li+-conductive microporous carbon-sulfur composite for Li-S batteries. Electrochim. Acta 2013, 87, 497–502.

    Article  Google Scholar 

  14. [14]

    Xi, K.; Cao, S.; Peng, X. Y.; Ducati, C.; Kumar, R. V.; Cheetham, A. K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulfur batteries. Chem. Commun. 2013, 49, 2192–2194.

    Article  Google Scholar 

  15. [15]

    Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301.

    Article  Google Scholar 

  16. [16]

    Brun, N.; Sakaushi, K.; Yu, L. H.; Giebeler, L.; Eckert, J.; Titirici, M. M. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2013, 15, 6080–6087.

    Article  Google Scholar 

  17. [17]

    Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

    Article  Google Scholar 

  18. [18]

    Zhou, X. H.; Li, L. F.; Dong, S. M.; Chen, X.; Han, P. X.; Xu, H. X.; Yao, J. H.; Shang, C. Q.; Liu, Z. H.; Cui, G. L. A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J. Solid State Electrochem. 2012, 16, 877–882.

    Article  Google Scholar 

  19. [19]

    Wei, S. C.; Zhang, H.; Huang, Y. Q.; Wang, W. K.; Xia, Y. Z.; Yu, Z. B. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy Environ. Sci. 2011, 4, 736–740.

    Article  Google Scholar 

  20. [20]

    Chung, S. H.; Manthiram, A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells. ChemSusChem 2014, 7, 1655–1661.

    Article  Google Scholar 

  21. [21]

    Tao, X. Y.; Zhang, J. T.; Xia, Y.; Huang, H.; Du, J.; Xiao, H.; Zhang, W. K.; Gan, Y. P. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries. J. Mater. Chem. A 2014, 2, 2290–2296.

    Article  Google Scholar 

  22. [22]

    Moreno, N.; Caballero, A.; Hernán, L.; Morales, J. Lithium-sulfur batteries with activated carbons derived from olive stones. Carbon 2014, 70, 241–248.

    Article  Google Scholar 

  23. [23]

    Tan, Z. Q.; Sun, L. S.; Xiang, J.; Zeng, H. C.; Liu, Z. H.; Hu, S.; Qiu, J. R. Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 2012, 50, 362–371.

    Article  Google Scholar 

  24. [24]

    Kannan, N.; Sundaram, M. M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—A comparative study. Dyes Pigm. 2001, 51, 25–40.

    Article  Google Scholar 

  25. [25]

    Kim, Y. J.; Lee, B. J.; Suezaki, H.; Chino, T.; Abe, Y.; Yanagiura, T.; Park, K. C.; Endo, M. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon 2006, 44, 1592–1595.

    Article  Google Scholar 

  26. [26]

    Jiang, J.; Zhu, J. H.; Ai, W.; Fan, Z. X.; Shen, X. N.; Zou, C. J.; Liu, J. P.; Zhang, H.; Yu, T. Evolution of disposable bamboo chopsticks into uniform carbon fibers: A smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 2014, 7, 2670–2679.

    Article  Google Scholar 

  27. [27]

    Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

    Article  Google Scholar 

  28. [28]

    Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.

    Article  Google Scholar 

  29. [29]

    Shinkarev, V. V.; Fenelonov, V. B.; Kuvshinov, G. G. Sulfur distribution on the surface of mesoporous nanofibrous carbon. Carbon 2003, 41, 295–302.

    Article  Google Scholar 

  30. [30]

    Zhang, Y. Z.; Liu, S.; Li, G. C.; Li, G. R.; Gao, X. P. Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte. J. Mater. Chem. A 2014, 2, 4652–4659.

    Article  Google Scholar 

  31. [31]

    Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.

    Article  Google Scholar 

  32. [32]

    Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.

    Article  Google Scholar 

  33. [33]

    Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.

    Article  Google Scholar 

  34. [34]

    Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu, W. C.; Qian, W. Z.; Wei, F. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2013, 2, 314–321.

    Article  Google Scholar 

  35. [35]

    Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Zhang, X. G. Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. Chem. —Eur. J. 2013, 19, 1013–1019.

    Article  Google Scholar 

  36. [36]

    Zhang, S. S. Sulfurized carbon: A class of cathode materials for high performance lithium/sulfur batteries. Front. Energy Res. 2013, 1, 1–9.

    Google Scholar 

  37. [37]

    Wang, Y. X.; Huang, L.; Sun, L. C.; Xie, S. Y.; Xu, G. L.; Chen, S. R.; Xu, Y. F.; Li, J. T.; Chou, S. L.; Dou, S. X.; et al. Facile synthesis of a interleaved expanded graphite-embedded sulfur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 4744–4750.

    Article  Google Scholar 

  38. [38]

    Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulfur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulfur batteries. Nature Commun. 2013, 4, 1331–1336.

    Article  Google Scholar 

  39. [39]

    Wang, W. G.; Wang, X.; Tian, L. Y.; Wang, Y. L.; Ye, S. H. In situ sulfur deposition route to obtain sulfur-carbon composite cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 4316–4323.

    Article  Google Scholar 

  40. [40]

    Ahn, W.; Kim, K.-B.; Jung, K.-N.; Shin, K.-H.; Jin, C.-S. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J. Power Sources 2012, 202, 394–399.

    Article  Google Scholar 

  41. [41]

    Choi, H. S.; Oh, J. Y.; Park, C. R. One step synthesis of sulfur-carbon nanosheet hybrids via a solid solvothermal reaction for lithium sulfur batteries. RSC Adv. 2014, 4, 3684–3690.

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Yanglong Hou or Shanqing Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Wang, Y., Lai, C. et al. Microporous bamboo biochar for lithium-sulfur batteries. Nano Res. 8, 129–139 (2015).

Download citation


  • biochars
  • lithium-sulfur batteries
  • microporous structure
  • bamboo carbon-sulfur composites