Nano Research

, Volume 8, Issue 4, pp 1159–1168 | Cite as

Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide

  • Pattaramon Vuttipittayamongkol
  • Fanqi Wu
  • Haitian Chen
  • Xuan Cao
  • Bilu Liu
  • Chongwu Zhou
Research Article

Abstract

Carbon nanotubes (CNTs) have emerged as an important material for printed macroelectronics. However, achieving printed complementary macroelectronics solely based on CNTs is difficult because it is still challenging to make reliable n-type CNT transistors. In this study, we report threshold voltage (V th) tuning and printing of complementary transistors and inverters composed of thin films of CNTs and indium zinc oxide (IZO) as p-type and n-type transistors, respectively. We have optimized the V th of p-type transistors by comparing Ti/Au and Ti/Pd as source/drain electrodes, and observed that CNT transistors with Ti/Au electrodes exhibited enhancement mode operation (V th < 0). In addition, the optimized In:Zn ratio offers good n-type transistors with high on-state current (I on) and enhancement mode operation (V th > 0). For example, an In:Zn ratio of 2:1 yielded an enhancement mode n-type transistor with V th ∼ 1 V and I on of 5.2 μA. Furthermore, by printing a CNT thin film and an IZO thin film on the same substrate, we have fabricated a complementary inverter with an output swing of 99.6% of the supply voltage and a voltage gain of 16.9. This work shows the promise of the hybrid integration of p-type CNT and n-type IZO for complementary transistors and circuits.

Keywords

carbon nanotube indium zinc oxide thin film transistor complementary inverter inkjet printing threshold voltage tuning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_596_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.08 MB.

References

  1. [1]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefGoogle Scholar
  2. [2]
    Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.CrossRefGoogle Scholar
  3. [3]
    Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; Arco, L. G. D.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.CrossRefGoogle Scholar
  4. [4]
    Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. L.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.CrossRefGoogle Scholar
  5. [5]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.CrossRefGoogle Scholar
  6. [6]
    Liu, B. L.; Wang, C.; Liu, J.; Che, Y. C.; Zhou, C. W. Aligned carbon nanotubes: From controlled synthesis to electronic applications. Nanoscale 2013, 5, 9483–9502.CrossRefGoogle Scholar
  7. [7]
    Balasubramanian, K.; Sordan, R.; Burghard, M.; Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 2004, 4, 827–830.CrossRefGoogle Scholar
  8. [8]
    Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.CrossRefGoogle Scholar
  9. [9]
    Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.CrossRefGoogle Scholar
  10. [10]
    Li, S. S.; Liu, C.; Hou, P. X.; Sun, D. M.; Cheng, H. M. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors. ACS Nano 2012, 6, 9657–9661.CrossRefGoogle Scholar
  11. [11]
    An, L; Fu, Q; Lu, C. G.; Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 2004, 126, 10520–10521.CrossRefGoogle Scholar
  12. [12]
    Vaillancourt, J.; Zhang, H. Y.; Vasinajindakaw, P.; Xia, H. T.; Lu, X. J.; Han, X. L.; Janzen, D. C.; Shih, W. S.; Jones, C. S.; Stroder, M. et al. All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl. Phys. Lett. 2008, 93, 243301.CrossRefGoogle Scholar
  13. [13]
    Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.CrossRefGoogle Scholar
  14. [14]
    Li, X. K.; Guard, L. M.; Jiang, J.; Sakimoto, K.; Huang, J. S.; Wu, J. G.; Li, J. Y.; Yu, L. Q.; Pokhrel, R.; Brudvig, G. W. et al. Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si solar cells. Nano Lett. 2014, 14, 3388–3394.CrossRefGoogle Scholar
  15. [15]
    Zhang, J. L.; Wang, C.; Zhou, C. W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.CrossRefGoogle Scholar
  16. [16]
    Wang, C.; Zhang, J. L.; Zhou, C. W. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123–7132.CrossRefGoogle Scholar
  17. [17]
    Lee, C. W.; Weng, C. H.; Wei, L.; Chen, Y.; Chan-Park, M. B.; Tsai, C. H.; Leou, K. C.; Poa, C. H. P.; Wang, J. L.; Li, L. J. Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem.C 2008, 112, 12089–12091.CrossRefGoogle Scholar
  18. [18]
    Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.CrossRefGoogle Scholar
  19. [19]
    Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 2002, 80, 2773–2775.CrossRefGoogle Scholar
  20. [20]
    Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986.CrossRefGoogle Scholar
  21. [21]
    Yaglioglu, B; Yeom, H. Y.; Beresford, R.; Paine, D. C. High-mobility amorphous In2O3-10 wt.% ZnO thin film transistors. Appl. Phys. Lett. 2006, 89, 062103.CrossRefGoogle Scholar
  22. [22]
    Liu, X. Q.; Wang, C. L.; Cai, B.; Xiao, X. H.; Guo, S. S.; Fan, Z. Y.; Li, J. C.; Duan, X. F.; Liao, L. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano Lett. 2012, 12, 3596–3601.CrossRefGoogle Scholar
  23. [23]
    Choi, C. G.; Seo, S. J.; Bae, B. S. Solution-processed indium-zinc oxide transparent thin-film transistors. Electrochem. Solid-State Lett. 2008, 11, H7–H9.CrossRefGoogle Scholar
  24. [24]
    Lee, S.; Kim, J.; Choi, J.; Park, H.; Ha, J.; Kim, Y.; Rogers, J. A.; Paik, U. Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors. Appl. Phys. Lett. 2012, 100, 102108.CrossRefGoogle Scholar
  25. [25]
    Lee, D. H.; Chang, Y. J.; Herman, G. S.; Chang, C. H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 2007, 19, 843–847.CrossRefGoogle Scholar
  26. [26]
    Ong, B. S.; Li, C. S.; Li, Y. N.; Wu, Y. L.; Loutfy, R. Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 2007, 129, 2750–2751.CrossRefGoogle Scholar
  27. [27]
    Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005, 487, 205–211.CrossRefGoogle Scholar
  28. [28]
    Lim, J. H.; Shim, J. H.; Choi, J. H.; Joo, J.; Park, K.; Jeon, H.; Moon, M. R.; Jung, D.; Kim, H.; Lee, H. J. Solution-processed InGaZnO-based thin film transistors for printed electronics applications. Appl. Phys. Lett. 2009, 95, 012108.CrossRefGoogle Scholar
  29. [29]
    Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.CrossRefGoogle Scholar
  30. [30]
    Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781–3787.CrossRefGoogle Scholar
  31. [31]
    Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683–3687.CrossRefGoogle Scholar
  32. [32]
    Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.CrossRefGoogle Scholar
  33. [33]
    Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 2006, 352, 851–858.CrossRefGoogle Scholar
  34. [34]
    Ha, M. J.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.CrossRefGoogle Scholar
  35. [35]
    Noh, J.; Jung, M.; Jung, K.; Lee, G.; Kim, J.; Lim, S.; Kim, D.; Choi, Y.; Kim, Y.; Subramanian, V. et al. Fully gravure-printed D flip-flop on plastic foils using single-walled carbon-nanotube-based TFTs. IEEE Electron Device Lett. 2011, 32, 638–640.CrossRefGoogle Scholar
  36. [36]
    Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures. Appl. Phys. Lett. 2014, 104, 062101.CrossRefGoogle Scholar
  37. [37]
    Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.CrossRefGoogle Scholar
  38. [38]
    Avouris, P. Carbon Nanotube Electronics. Chem. Phys. 2002, 281, 429–445.CrossRefGoogle Scholar
  39. [39]
    Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pattaramon Vuttipittayamongkol
    • 1
  • Fanqi Wu
    • 2
  • Haitian Chen
    • 1
  • Xuan Cao
    • 2
  • Bilu Liu
    • 1
  • Chongwu Zhou
    • 1
    • 2
  1. 1.Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations