Skip to main content
Log in

A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe-based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 2010, 110, 6474–6502.

    Article  Google Scholar 

  2. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

    Article  Google Scholar 

  3. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  Google Scholar 

  4. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  5. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

    Article  Google Scholar 

  6. Walter, M. G.; Warren, E. L.; Mckone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  7. Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  8. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys Today 2004, 57, 39–44.

    Article  Google Scholar 

  9. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  10. Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

    Article  Google Scholar 

  11. Carmo, M.; Fritz, D. L.; Merge, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

    Article  Google Scholar 

  12. Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Jiang, J. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. commun. 2014, 5, 4695.

    Article  Google Scholar 

  13. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

    Article  Google Scholar 

  14. Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. 2010, 36, 307–326.

    Article  Google Scholar 

  15. Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Chen, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521–530.

    Article  Google Scholar 

  16. Tueysuez, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.

    Article  Google Scholar 

  17. Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. Chemcatchem 2010, 2, 724–761.

    Article  Google Scholar 

  18. Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energ. Environ. Sci. 2010, 3, 1018–1027.

    Article  Google Scholar 

  19. Mills, A. Heterogeneous redox catalysts for oxygen and chlorine evolution. Chem. Soc. Rev. 1989, 18, 285–316.

    Article  Google Scholar 

  20. Yagi, M.; Kaneko, M. Molecular catalysts for water oxidation. Chem. Rev. 2001, 101, 21–35.

    Article  Google Scholar 

  21. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  Google Scholar 

  22. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.

    Article  Google Scholar 

  23. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  Google Scholar 

  24. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  Google Scholar 

  25. Over, H. Surface chemistry of Ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356–3426.

    Article  Google Scholar 

  26. Foerster, F.; Piguet, A. On the understanding of anodic formation of oxygen. Z. Angew. Phys. Chem. 1904, 10, 714–721.

    Google Scholar 

  27. Seiger, H. N.; Shair, R. C. Oxygen evolution from heavily doped nikel oxide electrodes. J. Electrochem. Soc. 1961, 108, C163.

    Article  Google Scholar 

  28. Tichenor, R. L. Nickel oxides relation between electrochemical reactivity and foreign ion content. Ind. Eng. Chem. 1952, 44, 973–977.

    Article  Google Scholar 

  29. Troilius, G.; Alfelt, G. The migration of iron in alkaline nickel-cadmium cells with pocket electrodes. Proceedings of the Fifth International Symposium on Power Sources, Brighton, UK, 1967. pp 337–348.

    Google Scholar 

  30. Falk, S. U.; Salkind, A. J. Alkaline storage batteries. Wiley: New York, 1969.

    Google Scholar 

  31. Munshi, M. Z. A.; Tseung, A. C. C.; Parker, J. The dissolution of iron from the negative material in pochet plate nickel cadmium batteries. J. Appl. Electrochem. 1985, 15, 711–717.

    Article  Google Scholar 

  32. Hickling, A.; Hill, S. Oxygen overvoltage. 1. The influence of electrode material, current density, and time in aqueous solution. Discuss. Faraday. Soc. 1947, 1, 236–246.

    Article  Google Scholar 

  33. Cordoba, S. I.; Carbonio, R. E.; Teijelo, M. L.; Macagno, V. A. The effect of the preparation method of mixed nickel iron hydroxide electrodes on the oxygen evolution reaction. J. Electrochem. Soc. 1986, 133, C300.

    Google Scholar 

  34. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin-film nickel-oxide electrodes. J. Electrochem. Soc. 1987, 134, 377–384.

    Article  Google Scholar 

  35. Mlynarek, G.; Paszkiewicz, M.; Radniecka, A. The effect of ferric ions on the behavior of a nickelous hydroxide electrode. J. Appl. Electrochem. 1984, 14, 145–149.

    Article  Google Scholar 

  36. Hall, D. E. Electrodes for alkaline water electrolysis. J. Electrochem. Soc. 1981, 128, 740–746.

    Article  Google Scholar 

  37. Bowen, C. T.; Davis, H. J.; Henshaw, B. F.; Lachance, R.; Leroy, R. L.; Renaud, R. Developments in advanced alkaline water electrolysis. Int. J. Hydrogen Energ. 1984, 9, 59–66.

    Article  Google Scholar 

  38. Janjua, M. B. I.; Leroy, R. L. Electrocatalyst performance in industrial water electrolysers. Int. J. Hydrogen Energ. 1985, 10, 11–19.

    Article  Google Scholar 

  39. Birss, V. I.; Damjanovic, A.; Hudson, P. G. Oxygen evolution at platinum electrodes in alkaline solutions. 2. Mechanism of the reaction. J. Electrochem. Soc. 1986, 133, 1621–1625.

    Article  Google Scholar 

  40. Conway, B. E.; Liu, T. C. Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evolution of behavior of surface intermediate states at the oxide film. Langmuir 1990, 6, 268–276.

    Article  Google Scholar 

  41. Corrigan, D. A.; Bendert, R. M. Effect of coprecipitated metal-ions on the electrochemistry of nickel-hydroxide thin-films-cyclic voltammetry in 1M KOH. J. Electrochem. Soc. 1988, 135, C156.

    Google Scholar 

  42. Kleinke, M. U.; Knobel, M.; Bonugli, L. O.; Teschke, O. Amorphous alloys as anodic and cathodic materials for alkaline water electrolysis. Int. J. Hydrogen Energ. 1997, 22, 759–762.

    Article  Google Scholar 

  43. Plata-Torres, M.; Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Arce-Estrada, E. M.; Ramirez-Rodriguez, C. Electrochemical performance of crystalline Ni-Co-Mo-Fe electrodes obtained by mechanical alloying on the oxygen evolution reaction. Int. J. Hydrogen Energ. 2007, 32, 4142–4152.

    Article  Google Scholar 

  44. Potvin, E.; Brossard, L. Electrocatalytic activity of Ni-Fe anodes for alkaline water electrolysis. Mater. Chem. Phys. 1992, 31, 311–318.

    Article  Google Scholar 

  45. Singh, R. N.; Pandey, J. P.; Anitha, K. L. Preparation of electrodeposited thin-films of nickel iron-alloys on mildsteel for alkaline water electrolysis. 1. Studies on oxygen evolutiont. Int. J. Hydrogen Energ. 1993, 18, 467–473.

    Article  Google Scholar 

  46. Grande, W. C.; Talbot, J. B. Electrodeposition of thin-films of nickel-iron.1. Experimental. J. Electrochem. Soc. 1993, 140, 669–674.

    Article  Google Scholar 

  47. Solmaz, R.; Kardas, G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta 2009, 54, 3726–3734.

    Article  Google Scholar 

  48. Hu, C. C.; Wu, Y. R. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis. Mater. Chem. Phys. 2003, 82, 588–596.

    Article  Google Scholar 

  49. Ullal, Y.; Hegde, A. C. Electrodeposition and electrocatalytic study of nanocrystalline Ni-Fe alloy. Int. J. Hydrogen Energ. 2014, 39, 10485–10492.

    Article  Google Scholar 

  50. Li, X.; Walsh, F. C.; Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 2011, 13, 1162–1167.

    Article  Google Scholar 

  51. Perez-Alonso, F. J.; Adan, C.; Rojas, S.; Pena, M. A.; Fierro, J. L. G. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. Int. J. Hydrogen Energ. 2014, 39, 5204–5212.

    Article  Google Scholar 

  52. Kleiman-Shwarsctein, A.; Hu, Y.-S.; Stucky, G. D.; McFarland, E. W. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochem. Commun. 2009, 11, 1150–1153.

    Article  Google Scholar 

  53. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  54. Merrill, M. D.; Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 2008, 112, 3655–3666.

    Article  Google Scholar 

  55. Kim, K. H.; Zheng, J. Y.; Shin, W.; Kang, Y. S. Preparation of dendritic NiFe films by electrodeposition for oxygen evolution. RSC Adv. 2012, 2, 4759–4767.

    Article  Google Scholar 

  56. Singh, R. N.; Singh, J. P.; Lal, B.; Thomas, M. J. K.; Bera, S. New NiFe2−x CrxO4 spinel films for O2 evolution in alkaline solutions. Electrochim Acta 2006, 51, 5515–5523.

    Article  Google Scholar 

  57. Anindita, A.; Singh, R. N. Effect of V substitution at B-site on the physicochemical and electrocatalytic properties of spinel-type NiFe2O4 towards O2 evolution in alkaline solutions. Int. J. Hydrogen Energ. 2010, 35, 3243–3248.

    Article  Google Scholar 

  58. Kumar, M.; Awasthi, R.; Sinha, A. S. K.; Singh, R. N. New ternary Fe, Co, and Mo mixed oxide electrocatalysts for oxygen evolution. Int. J. Hydrogen Energ. 2011, 36, 8831–8838.

    Article  Google Scholar 

  59. Chanda, D.; Hnat, J.; Paidar, M.; Bouzek, K. Evolution of physicochemical and electrocatalytic properties of NiCo2O4 (AB(2)O(4)) spinel oxide with the effect of Fe substitution at the A site leading to efficient anodic O2 evolution in an alkaline environment. Int. J. Hydrogen Energ. 2014, 39, 5713–5722.

    Article  Google Scholar 

  60. Cheng, Y.; Liu, C.; Cheng, H.-M.; Jiang, S. P. One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting. ACS Appl. Mater. Inter. 2014, 6, 10089–10098.

    Article  Google Scholar 

  61. Singh, N. K.; Singh, R. N. Electrocatalytic properties of spinel type NixFe3−x O4 synthesized at low temperature for oxygen evolution in KOH solutions. Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 1999, 38, 491–495.

    Google Scholar 

  62. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  Google Scholar 

  63. Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat.Commun. 2014, 5, 4345.

    Google Scholar 

  64. Miller, E. L.; Rocheleau, R. E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 1997, 144, 3072–3077.

    Article  Google Scholar 

  65. Kodama, R. H.; Berkowitz, A. E.; McNiff, E. J.; Foner, S. Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 1996, 77, 394–397.

    Article  Google Scholar 

  66. Kodama, R. H. Magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372.

    Article  Google Scholar 

  67. Smith, R. D. L.; Prevot. M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Sui, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

    Article  Google Scholar 

  68. Evans, D. G.; Slade, R. C. T. Structural aspects of layered double hydroxides. In Layered Double Hydroxides, Vol. 119. X. Duan & D. G. Evans, eds. Springer: Berlin, Heidelberg, New York, 2006.

    Google Scholar 

  69. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layer double hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    Article  Google Scholar 

  70. Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.

    Article  Google Scholar 

  71. Refait, P.; Abdelmoula, M.; Simon, L.; Genin, J. M. R. Mechanisms of formation and transformation of Ni-Fe layered double hydroxides in SO2− and SO 2−4 containing aqueous solutions. J. Phys. Chem. Solids 2005, 66, 911–917.

    Article  Google Scholar 

  72. Shi, Q. X.; Lu, R. W.; Lu, L. H.; Fu, X. M.; Zhao, D. F. Efficient reduction of nitroarenes over nickel-iron mixed oxide catalyst prepared from a nickel-iron hydrotalcite precursor. Adv. Synth. Catal. 2007, 349, 1877–1881.

    Article  Google Scholar 

  73. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Rieger, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  Google Scholar 

  74. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2014, 53, 7584–7588.

    Article  Google Scholar 

  75. Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Inter. 2014, 6, 7918–7925.

    Article  Google Scholar 

  76. Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.

    Article  Google Scholar 

  77. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  78. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. commun. 2014, 5, 4477.

    Google Scholar 

  79. Gerken, J. B.; Chen, J. Y. C.; Masse, R. C.; Powell, A. B.; Stahl, S. S. Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electro-catalysts for water oxidation. Angew. Chem.Inter. Ed. 2012, 51, 6676–6680.

    Article  Google Scholar 

  80. Gerken, J. B.; Shaner, S. E.; Masse, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energ. Environ Sci. 2014, 7, 2376–2382.

    Article  Google Scholar 

  81. Haber, J. A.; Xiang, C. C.; Guevarra, D.; Jung, S. H.; Jin, J.; Gregoire, J. M. High-throughput mapping of the electrochemical properties of (Ni-Fe-Co-Ce)Ox oxygen-evolution catalysts. Chemelectrochem 2014, 1, 524–528.

    Article  Google Scholar 

  82. Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion. Energ. Environ. Sci. 2014, 7, 1382–1386.

    Article  Google Scholar 

  83. Bode, H.; Dehmelt, K.; Witte, J. Nickel hydroxide electrodes. 2. oxidation products of nickel(II) hydroxides. Z. Anorg. Allg. Chem 1969, 366, 1.

    Article  Google Scholar 

  84. Barnard, R.; Randell, C. F.; Tye, F. L. Studies concerning charged nickel-hydroxide electrodes. 1. Measurements of reversible potentials. J. Appl. Electrochem. 1980, 10, 109–125.

    Article  Google Scholar 

  85. Lu, P. W. T.; Srinivasan, S. Electrochemical-ellipsometric studies of oxide film for medon nickel during oxygen evolution. J. Electrochem. Soc. 1978, 125, 1416–1422.

    Article  Google Scholar 

  86. Lyons, M. E. G.; Brandon, M. P. The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1-Nickel. Inter. J. Electrochem. Sci. 2008, 3, 1386–1424.

    Google Scholar 

  87. Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.

    Article  Google Scholar 

  88. Landon, J.; Demeter, E.; Inoglu, N.; Keturakis, C.; Wachs, I. E.; Vasic, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.

    Article  Google Scholar 

  89. Li, Y.-F.; Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 2014, 4, 1148–1153.

    Article  Google Scholar 

  90. Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257.

    Article  Google Scholar 

  91. Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Article  Google Scholar 

  92. Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. commun 2013, 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, M., Dai, H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23–39 (2015). https://doi.org/10.1007/s12274-014-0591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0591-z

Keywords

Navigation