Nano Research

, Volume 8, Issue 1, pp 106–116 | Cite as

Ag3PO4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity

Research Article

Abstract

Cluster-like Ag3PO4 nanostructures including nanoparticles, trisoctahedrons, tetrahedrons and tetrapods have been prepared by the synergetic reaction of Ag nanocrystals, phosphate anions and hydrogen peroxide. The acidity and alkalinity of the reaction solution are tuned to adjust the oxidizing ability of H2O2, and thus control the final morphology. Ag nanocrystals function as a sacrificial precursor, leading to the generation of cluster-like nanostructures. Through a kinetic study, the formation of Ag3PO4 nanocrystal clusters can be understood as the conversion from Ag to Ag3PO4 nanocrystals assisted by H2O2, followed by the oriented attachment of nanocrystals into cluster-like colloids with specific shapes. The as-prepared Ag3PO4 nanostructures have higher photocatalytic activity than commercial TiO2 and some reported Ag3PO4 microcrystals in the degradation of dyes. The catalytic activity decreases in the order nanoparticles > trisoctahedrons > tetrahedrons > tetrapods, while the stability increases in the order nanoparticles < tetrahedrons < trisoctahedrons < tetrapods, which can be explained by the extent of absorption of visible light and structural factors, including size and exposed crystal facets.

Keywords

nanocrystal cluster photocatalysis silver phosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_580_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 1.97 MB.

References

  1. [1]
    Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.CrossRefGoogle Scholar
  2. [2]
    Wu, M. C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R.; et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 2011, 4, 360–369.CrossRefGoogle Scholar
  3. [3]
    Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351.CrossRefGoogle Scholar
  4. [4]
    Zhou, C.; Shang, L.; Yu, H.; Bian, T.; Wu, L. Z.; Tung, C. H.; Zhang, T. Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catal. Today 2014, 225, 158–163.CrossRefGoogle Scholar
  5. [5]
    Zhou, C.; Zhao, Y. F.; Bian, T.; Shang, L.; Yu, H. J.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem. Commun. 2013, 49, 9872–9874.CrossRefGoogle Scholar
  6. [6]
    Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo, W. J.; Li, Z. S.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564.CrossRefGoogle Scholar
  7. [7]
    Pasternak, S.; Paz, Y. On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants. ChemPhysChem 2013, 14, 2059–2070.CrossRefGoogle Scholar
  8. [8]
    Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379–386.CrossRefGoogle Scholar
  9. [9]
    Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562–577.CrossRefGoogle Scholar
  10. [10]
    Lasek, J.; Yu, Y. H.; Wu, J. C. S. Removal of NOx by photocatalytic processes. J. Photochem. Photobiol. C 2013, 14, 29–52.CrossRefGoogle Scholar
  11. [11]
    Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.CrossRefGoogle Scholar
  12. [12]
    Xuan, J.; Xiao, W. J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 6828–6838.CrossRefGoogle Scholar
  13. [13]
    Kisch, H. Semiconductor photocatalysis—Mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 2013, 52, 812–847.CrossRefGoogle Scholar
  14. [14]
    Shiraishi, Y.; Kanazawa, S.; Tsukamoto, D.; Shiro, A.; Sugano, Y.; Hirai, T. Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS. Catal. 2013, 3, 2222–2227.CrossRefGoogle Scholar
  15. [15]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  16. [16]
    Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.CrossRefGoogle Scholar
  17. [17]
    Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C 2013, 15, 1–20.CrossRefGoogle Scholar
  18. [18]
    Huang, G. F.; Ma, Z. L.; Huang, W. Q.; Tian, Y.; Jiao, C.; Yang, Z. M.; Wan, Z.; Pan, A. L. Ag3PO4 semiconductor photocatalyst: Possibilities and challenges. J. Nanomater. 2013, 2013, 1–8.Google Scholar
  19. [19]
    Nebel, C. E. Photocatalysis: A source of energetic electrons. Nat. Mater. 2013, 12, 780–781.CrossRefGoogle Scholar
  20. [20]
    Umezawa, N.; Shuxin, O.; Ye, J. Theoretical study of high photocatalytic performance of Ag3PO4. Phys. Rev. B 2011, 83, 035202.CrossRefGoogle Scholar
  21. [21]
    Bi, Y. P.; Hu, H. Y.; Ouyang, S. X.; Lu, G. X.; Cao, J. Y.; Ye, J. H. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chem. Commun. 2012, 48, 3748–3750.CrossRefGoogle Scholar
  22. [22]
    Dong, P. Y.; Wang, Y. H.; Li, H. H.; Li, H.; Ma, X. L.; Han, L. L. Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals. J. Mater. Chem. A 2013, 1, 4651–4656.CrossRefGoogle Scholar
  23. [23]
    Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys. Chem. Chem. Phys. 2011, 13, 10071–10075.CrossRefGoogle Scholar
  24. [24]
    Hu, P. F.; Cao, Y. L.; Jia, D. Z.; Li, Q.; Liu, R. L. Engineering the metathesis and oxidation-reduction reaction in solid state at room temperature for nanosynthesis. Sci. Rep. 2014, 4, 04153.Google Scholar
  25. [25]
    Liu, J. K.; Luo, C. X.; Wang, J. D.; Yang, X. H.; Zhong, X. H. Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity. CrystEngComm 2012, 14, 8714–8721.CrossRefGoogle Scholar
  26. [26]
    Jiao, Z. B.; Zhang, Y.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties. Chem. Commun. 2013, 49, 636–638.CrossRefGoogle Scholar
  27. [27]
    Martin, D. J.; Umezawa, N.; Chen, X. M.; Ye, J. H.; Tang, J. W. Facet engineered Ag3PO4 for efficient water photooxidation. Energ. Environ. Sci. 2013, 6, 3380–3386.CrossRefGoogle Scholar
  28. [28]
    Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.CrossRefGoogle Scholar
  29. [29]
    Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties. J. Mater. Chem. A 2013, 1, 2387–2390.CrossRefGoogle Scholar
  30. [30]
    Bi, Y. P.; Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H. Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties. Phys. Chem. Chem. Phys. 2012, 14, 14486–14488.CrossRefGoogle Scholar
  31. [31]
    Wang, H.; He, L.; Wang, L. H.; Hu, P. F.; Guo, L.; Han, X. D.; Li, J. H. Facile synthesis of Ag3PO4 tetrapod microcrystals with an increased percentage of exposed {110} facets and highly efficient photocatalytic properties. CrystEngComm 2012, 14, 8342–8344.CrossRefGoogle Scholar
  32. [32]
    Wang, J.; Teng, F.; Chen, M. D.; Xu, J. J.; Song, Y. Q.; Zhou, X. L. Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity. CrystEngComm 2013, 15, 39–42.CrossRefGoogle Scholar
  33. [33]
    Lou, Z. Z.; Huang, B. B.; Wang, Z. Y.; Zhang, R.; Yang, Y. M.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Fast-generation of Ag3PO4 concave microcrystals from electrochemical oxidation of bulk silver sheet. CrystEngComm 2013, 15, 5070–5075.CrossRefGoogle Scholar
  34. [34]
    Liang, Q. H.; Ma, W. J.; Shi, Y.; Li, Z.; Yang, X. M. Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm 2012, 14, 2966–2973.CrossRefGoogle Scholar
  35. [35]
    Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chem. Commun. 2011, 47, 7797–7799.CrossRefGoogle Scholar
  36. [36]
    Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.CrossRefGoogle Scholar
  37. [37]
    Hu, Y. X.; Ge, J. P.; Lim, D.; Zhang, T. R.; Yin, Y. D. Size-controlled synthesis of highly water-soluble silver nanocrystals. J. Solid State Chem. 2008, 181, 1524–1529.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fei Pang
    • 1
  • Xueteng Liu
    • 1
  • Mingyuan He
    • 1
  • Jianping Ge
    • 1
  1. 1.Department of Chemistry, Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal UniversityShanghaiChina

Personalised recommendations